DIFFERENTIAL EQUATIONS 1001 Flashcards
Determine the order and degree of the differential equation
2x (d^4y/dy^4) + 5x2 (dy/dx)^3 - xy = 0
A. Fourth order, first degree
B. Third order, first degree
C. First order, fourth degree
D. First order, third degree
A. Fourth order, first degree
Which of the following equations is an exact DE?
A. (x^2 + 1) dx - xy dy = 0
B. x dy + (3x-2y) dx = 0
C. 2xy dx + (2 + x^2) dy = 0
D. x’y dy - y dx = 0
C. 2xy dx + (2 + x^2) dy = 0
Which of the following equations is a variable separable DE?
A. (x + x^2 y) dy = (2x + xy^2) dx
B. (x + y) dx - 2y dy = 0
C. 2y dx = (x^2 + 1) dy
D. y^2 dx + (2x-3y) dy = 0
C. 2y dx = (x^2 + 1) dy
The equation y^2 = cx is the general solution of:
A. y’ = 2y/x
B. y’ = 2x/y
C. y’ = y/2x
D. y’ = x/2y
C. y’ = y/2x
Solve the differential equation: x (y-1) dx + (x + 1) dy = 0. If y = 2 when x = 1, determine y when x = 2.
A. 1.80
B. 1.48
C. 1.55
D. 1.63
C. 1.55
If dy = x^2dx; what is the equation of y in terms of x if the curve passes through (1,1)?
A. x^2 - 3y + 3 = 0
B. x^3 - 3y + 2 = 0
C. x^3 + 3y^2 + 2 = 0
D. 2y + x^3 + 2 = 0
B. x^3 - 3y + 2 = 0
Find the equation of the curve at every point of which the tangent line has a slope of 2x.
A. x = -y^2 + C
B. y = -x^2 + C
C. y = x^2 + C
D. x = y^2 + C
C. y = x^2 + C
Solve (cos x cos y - cot x) dx - sin x sin y dy = 0
A. sin x cos y = In (c cos x)
B. sin x cos y = In (c sin x)
C. sin x cos y = - In (c sin x)
D. sin x cos y = - In (c cos x)
B. sin x cos y = In (c sin x)
Solve the differential equation dy -xdx = 0, if the curve passes through (1,0)?
A. 3x^2 + 2y - 3 = 0
B. 2y + x^2 - 1 = 0
C. x^2 - 2y - 1 = 0
D. 2x^2 + 2y - 2 = 0
C. x^2 - 2y - 1 = 0
What is the solution of the first order differential equation y(k+1) = y(k) + 5.
A. y(k) = 4 - 5/k
B. y(k) = 20 + 5k
C. y(k) = C - k, where C is constant
D. The solution is non-existent for real values of y
B. y(k) = 20 + 5k
Solve (y - √(x2 + y2) ) dx - xdy = 0
A. √(x2+ y2) + y = C
B. √(x2 + y2 + y) = C
C. √(x + y) + y = C
D. √(x2 - y) + y = C
A. √(x2+ y2) + y = C
Find the differential equation whose general solution is
y = C1^x + C2e^x.
A. (x-1) y” - xy’ + y = 0
B. (x+1) y” - xy’ + y = 0
C. (x-1) y” + xy’ + y = 0
D. (x+1) y” + xy’ + y = 0
A. (x-1) y” - xy’ + y = 0
Find the general solution of y’ = y sec x
A. y = C (sec x + tan x)
B. y = C (sec x - tan x)
C. y = C sec x tan x
D. y= C (sec^2 x tan x)
A. y = C (sec x + tan x)
Solve xy’ (2y-1) = y (1-x)
A. In (xy)=2 (x-y) + C
B. In (xy) = x - 2y + C
C. In (xy) = 2y - x + C
D. In (xy) = x + 2y + C
D. In (xy) = x + 2y + C
Solve (x + y) dy = (x - y) dx.
A. x^2 + y^2 = C
B. x^2 + 2xy + y^2 = C
C. x^2 - 2xy - y^2 = C
D. x^2 - 2xy + y^2 = C
C. x^2 - 2xy - y^2 = C