Diff eq Flashcards
∫x^(n) dx, n !=−1
1n+ 1xn+1+C, n !=−1
∫cos(x) dx
sin(x) +C
∫sec^2(x) dx
tan(x) +C
∫sec(x) tan(x) dx
sec(x) +C
∫sin(x) dx
−cos(x) +C
∫csc^(2)(x) dx
−cot(x) +C
∫csc(x) cot(x) dx
−csc(x) +C
∫x^(−1) dx
ln|x|+C
∫e^(ax) dx, a != 0
1 e^(ax) +C, a != 0
a
∫tan(x) dx
ln |sec(x)| +C
∫sec(x) dx
ln |sec(x) + tan(x)| +C
∫cot(x) dx
ln |sin(x)| +C
∫csc(x) dx
−ln |csc(x) + cot(x)| +C
∫ ___1___
√(1−x^2) dx
arcsin(x) +C
∫ ___1__
x^(2) + 1 dx
arctan(x) +C
∫ ___1____
x√x^(2)−1 dx
arcsec(x) +C
∫arcsin(x) dx
x arcsin(x) +√(1−x^(2))+C
∫arctan(x) dx
xarctan(x)− (1/2) ln |1 +x^(2)| +C
∫arcsec(x) dx
x arcsec(x) −ln |x+√(x^(2)−1)|+C
∫arccos(x) dx
x arccos(x) −√(1−x^(2))+C
∫arccot(x) dx
x arccot(x) + (1/2) ln|1 +x^(2)|+C
∫arccsc(x) dx
x arccsc(x) + ln |x+√(x^(2)−1)| +C
∫cos^(n)(x) dx
(1/n) cos^(n−1)(x) * sin(x) +n−1 ∫cos^(n−2)(x) dx
n
∫tan^(n)(x) dx
1 tan^(n−1)(x)−∫tan^(n−2)(x) dx
n-1
∫sec^(n)(x) dx
( 1 / n-1 ) sec^(n−2)(x) * tan(x) + (n−2)/(n−1) ∫sec^(n−2)(x) dx
∫sin^(n)(x) dx
−(1/n) sin^(n−1)(x) cos(x) + (n−1 / n) ∫sin^(n−2)(x) dx
∫cot^(n)(x) dx
− (1 / n−1 ) cot^(n−1)(x)−∫cot^(n−2)(x) dx
∫csc^(n)(x) dx
−(1 / n−1 ) csc^(n−2)(x) cot(x) + (n−2 / n−1 ) ∫csc^(n−2)(x) dx