DGII Definitions Flashcards
trivial bundle of rank k
.
metric space
.
Inverse Function Theorem for Manifolds
.
Push forward
.
Schwarz Lemma
.
Maurer-Cartan Lemma
.
variation
.
connection
- Levi-civita
- metric
- torsion free
- affine
- curvature
.
Riemannian curvature tensor
.
Stoke’s Theorem
.
wedge product of k and l forms
.
parallel section
.
Hopf and Rinow Theorem (Theorem 53)
.
Second Bianchi Identity
.
endomorphism
.
Exponential map
.
length and energy of curves
.
pullback bundle
.
metric
.
Koszul Formula
.
exterior derivative
.
differential of f
.
Smooth maps
.
sectional curvature
.
Lie algebra
.
Tangent space
.
First bianchi Identity
.
vector field
.
vector bundles
- tensor
- pullback
- flat
.
vector bundle isomorphism
.
Atlas
.
grassmannian
.
tangent bundle + fiber
.
differential k-forms
.
curvature of a connection
.
Gauss Lemma (Theorem 50)
.
Compatible Charts
.
killing fields
.
diffeomorphism
.
pullback of
- forms
- connections
- metric
.
complete Riemannian Manifold
.
geodesic normal coordinates
.
section
-parallel
.
Coordinate frame
.
isometry
.
Leibniz’s Rule
.
bundle-valued differential forms
.
curvature tensor
.
torsion tensor/tautological form
.
submanifold
.
manifold
- smooth
- topological
- Riemannian
- flat
.
geodesic
.
frame field
.
Ricci Curvature
.
Scalar curvature
.
Sectional curvature
.
M is a complete Riemannian manifold. Then which things are equivalent?
.
Gauss Bonnet
.
When is M isometric to a sphere of radius r=1/sqrt(K)?
.
When is M homeomorphic to Sn?
.