Definitions Flashcards

1
Q

What axioms must a metric space satisfy?

A

(M1) d(x, y) ≥ 0 for all x, y ∈ X; d(x, y) = 0 if and only if x = y

(M2) (Symmetry) for all x, y ∈ X, d(y, x) = d(x, y)

(M3) (Triangle inequality) for all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

What is the open ball in X of radius r centred at x0 expressed as?

A

The set B(x0, r) = {x ∈ X: d(x,x0) < r}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

What is the closed ball in X of radius r centre at x0 expressed as?

A

The set B’(x0, r) = {x ∈ X: d(x, x0) ≤ r}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What is the sphere in X of radius r centred at x0 expressed as?

A

The set S(x0, r) = {x ∈ X: d(x, x0) = r}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

When is a subset A of a metric space X bounded?

A

If A ⊆ B(x0, r) for some x0 ∈ X and r > 0.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

When is a subset in a metric space open?

A

It is open iff it is a union of open balls.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

When is a subset V of a metric space X closed in X?

A

When X\V is open in X

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Let (X, dX) and (Y, dY) be metric spaces. A function f: X → Y is an isometric embedding if, for every x1, x2 ∈ X:

A

dY(f(x1),f(x2)) = dX(x1, x2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Is an isometric embedding injective?

A

Yes

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

The composition of two isometries is…?

A

An isometry

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Define the notion of continuity between two metric spaces (X, dX) and (Y,dY) with the function f: X → Y, a mapping between them.

A

f is continous at x0 ∈ X if for any given ε > 0, there exists δ > 0 such that whenever dX(x,x0) < δ we have that dY(f(x),f(x0)) < ε .

f is continuous if f is continous at every x0 ∈ X

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

When is a function f a homeomorphism?

A

f: X → Y is a homeomorphism if it is a bijection and both f and f-1 are continuous.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Is an isometric embedding continuous?

A

Yes

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Is every homeomorphism an isometry?

A

No

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

When is a sequence (xn) in a metric space called Cauchy?

A

If for every ε > 0 there exists N ∈ ℕ such that whenever m ≥ n ≥ N

d(xm, xn) < ε

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Is every convergent sequence Cauchy?

A

Yes.

Let (xn) be a sequence in a metric space (X, d) that converges to a point a ∈ X. Let ε > 0. There eists N such that for every n ≥ N, d(xn, a) < ε/2. It follows that for ever m ≥ n ≥ N,

d(xn, xm) ≤ d(xn, a) + d(xm, a) < ε/2 + ε/2 = ε

17
Q

When is a metric space complete?

A

If every Cauchy sequence in X converges to a point in X

18
Q

What three axioms must the non-empty set X together with a family T of subsets of X satisfy to be a toological space?

A

(T1) X, ∅ ∈ T

(T2) U, V ∈ T ⇒ U ∩ V ∈ T

(T3) Ui ∈ T for all i ∈ I ⇒∪Ui∈ T