Credibility Flashcards
Classical Credibility/Limited Fluctuation credibility
Full Credibility
of exposures needed for full credibility nc:
Full credibility for aggregate claims:
nc=((Z(1+p)/2)/k%)(CV^2)
Full credibility of aggregate claims :
nc=((Z(1+p)/2)/k%)((sigma^2 n )/un + CV^2)
- full credibility for claim frequency : set CV^2 =0
- full credibility for claim severity : set sigma^2n /un =0
**full credibility requires the confidence interval to be +- nc(k%) = sigma* Z(1+p)/2
Classical Credibility/Limited Fluctuation credibility
Partial Credibility
Credibility Premium Pc=Z*average+(1-Z)M
where M=manual premium
Z=credibility factor
Square Root Rule : Z=(n/nc)^0.5
Bayesian Credibility
Model Distribution
Distribution of model conditioned on a parameter
model Density function : f(x/theta)
Bayesian Credibility
Prior Distribution
Inital distribution of the parameter
Prior Density function : pi(theta)
Bayesian Credibility
Posterior Distribution
Revised distribution of the parameter
Posterior Density function : pi(theta/data)
posterior= (f(data/theta)pi(theta))/ (integral of f(data/theta)pi(theta) dtheta )
posterior mean = estimate the number of claims
Bayesian Credibility
Predictive Distribution
Revised unconditional distribution of the model
Predictive Density function : f(x/data)
**Predictive mean= Bayesian Premium*
Bülhmann Credibility
Steps
- Expected Hypothetical Mean (EHM) = E(E(x/theta))
- Expected Process Variance (EPV):v = E(Var(x/theta))
- Variance of the Hypothetical Mean (VHM) :a = Var(E(x/theta))
- k=v/a
- Bülhmann Credibility Factor = n/(n+k)
all policies must have an equal number of exposure units
Bülhmann Credibility Estimate
Bülhmann as Least Square Estimate of Bayesian
Z(x)+(1-Z)u where x is the actual value
need to minimise sum of (1/n)(BCE-BayesCE)^2
Properties of the Bayesian/ Bülhmann Graph
- Bülhmann estimate are on a straight line
- Bayesian estimate are within the range of hypothetical means
- There are Bayesian estimâtes above and bellow the Bülhmann line
- Bülhmann estimâtes are between the sample mean and theorical mean
Conjugate Priors
Poisson/Gamma
Model: Poisson (lambda)
Prior: Gamme(alpha, theta)
Posterior (lamdba/ data) follows Gamma(alpha, theta)
alpha= alpha + sum (xi)
theta = (1/theta+n)^(-1)
Predicitve = Neg. Binomial (r=alpha, beta=theta)
Conjugate Priors
Binomial/Beta
Model: x/q Binomial(m,q)
Prior : Beta (a,b,1)
Posterior (q/data) follows a Beta(a, b, 1)
a=a+sum (xi)
b= beta + (n(m) -sum(xi)
Predictive = no formula
Conjugate Priors
Exponential/ inv. Gamma
Model x/theta Exponential (theta)
Prior theta Inv. Gamma (alpha, beta)
Psterior Theta/data follows Inv. Gamma( alpha, beta)
alpha* = alpha + n beta* = beta +sum(xi)
Predictive Pareto (alpha, Theta=Beta)
Conjugate Priors
Normal/Normal
Model x/theta : normal (theta, v(sigma^2))
Prior: normal (u,a(sigma^2))
Posterior theta/data follows normal (u,a)
u=Zaverage+(1-Z)u
a*=(1-Z)a
Z=na/(na+v)
Predictive follows a normal(u=u, sigma^2=v+a)
Conjugate Priors
Uniform/S-P Pareto
Model x/theta Uniform (0, theta)
Prior S-P Pareto (aplha, beta)
Posterior x/theta S-P Pareto (alpha, beta)
alpha=alpha +n
Beta=max(beta, x1,…xn)