Core Pure 4: Finding Roots Of Polynomials Flashcards
If α and β are roots if the equation ax^2+bx+c = 0,
What is:
- α+β
- αβ
α+β = -b/a
αβ = c/a
What is the layout for ‘ax^2 + bx + c’ factorised
ax^2 +bx + c ≡ a (x-α) (x-β)
If α, β and γ are roots if the equation ax^3+bx^2+cx + d = 0,
What is:
- α+β+γ
- αβ + βγ + γα
- αβγ
α+β+γ = Σα = -b/a
αβ + βγ + γα = Σαβ = c/a
αβγ = -d/a
What is the layout for ‘
Ax^3 + bx^2 + cx + d’ factorised
ax^3 + bx^2 + cx + d ≡ a (x-α) (x-β) (x-γ)
If α, β, γ and δ are roots if the equation ax^4+bx^3+cx^2 + dx + e = 0,
What is:
- α+β+γ+δ
- αβ + αγ + αδ + βγ + βδ + γδ
- αβγ + αβδ + αγδ + βγδ
- αβγδ
-α+β+γ+δ = Σα = -b/a
αβ + αγ + αδ + βγ + βδ + γδ = Σαβ = c/a
αβγ + αβδ + αγδ + βγδ = Σαβγ = -d/a
αβγδ = e/a
What is the layout for ‘ax^4 + bx^3 + cx^2 + dx + e’ factorised
ax^4 + bx^3 + cx^2 + dx + e ≡ a (x-α) (x-β) (x-γ) (x -δ)
Rule for the Reciprocal of a:
- Quadratic
1/α + 1/β - Cubic
1/α + 1/β + 1/γ - Quartic
1/α + 1/β + 1/γ + 1/δ
Quadratic:
1/α + 1/β = α+β/αβ
Cubic:
1/α + 1/β + 1/γ = αβ+βγ+γα / αβγ
Quartic:
1/α + 1/β + 1/γ + 1/δ = αβγ+βγδ+γδα+δαβ / αβγδ
Rules of the sum of squares for a Quadratic
α^2 + β^2
α^2 + β^2 = (α+β)^2 - 2αβ
Rules of the sum of squares for a Cubic
α^2 + β^2 + γ^2
α^2 + β^2 + γ^2 = (α+β+γ)^2 - 2(αβ+βγ+γα)
Rules of the sum of squares for a Quartic
α^2 + β^2 + γ^2 + δ^2
α^2 + β^2 + γ^2 + δ^2 = (α+β+γ+δ)^2 -2(αβ + αγ + αδ + βγ + βδ + γδ)
Rules of the sum of cubes for a Quadratic
α^3 + β^3
α^3 + β^3 = (α+β)^3 - 3αβ (α+β)
Rules of the sum of cubes for a Cubuc
α^3 + β^3 + γ^3
α^3 + β^3 + γ^3 = (α+β+γ)^3 - 3(α+β+γ)(αβ+βγ+ γα) + 3 αβγ