Convergence Tests Flashcards
Limit Comparison Test
L = lim|ak/bk|
k->∞
and L > 0 and finite, then both series converge or diverge
Comparison Test
Comparison test
Guess whether Σµk converges
Find a series that proves this (either a smaller one that diverges or a bigger one that converges)
Ratio Test
L = lim|uk+1/uk|
k->∞
If L < 1, the series converges
If L > 1 or L=∞, the series diverges
If l=1, the series may converge or diverge
Root Test
L = lim kõk
k->∞
If L < 1, the series converges
If L > 1 or L=∞, the series diverges
if L=1, the series may converge or diverge; another test must be tried
Integral Test
Find a corresponding function.
Both Σµk and ∫1->∞ f(x)dx both converge or diverge
AST
1) an > an+1 2) lim ak = 0
k->∞
Geometric Series
Σa(r)^n-1 = a/1-r for |r| < 1.
converges if -1 < r < 1
Divergence
lim µk = 0, then the series Σµk may converge or diverge.
k-> ∞
lim µk ≠ 0, then Σµk diverges.
k-> ∞
P-series
P-series is of the form:
Σµk = 1/k^P
or any constant instead of 1.
If P>1, the series converges. if 0<P≤1, the series diverges.