Complex Numbers and Functions Flashcards
The conjugate, z*, of the complex number z = a + jb is..
It’s the mirror image of the complex number across the horizontal axis
z* = a - j*b
z =z1*z2 = (a1+jb1)(a2+jb2)
z = (a1*a2 - b1*b2) + j(a1b2+b1a2)
z = z1/z2 =
[(a1*a2+b1*b2)/(a22 + b22)] + j[(a2*b1-a1*b2)/(a22 + b22)]
Euler’s Idenity
ejΘ = cos(Θ) + jsin(Θ)
Let Θ be any real number. Then cos(Θ) & sin(Θ) equal
cos(Θ) = .5(ejΘ+e-jΘ)
sin(Θ) = (1/2j)(ejΘ-e-jΘ)
z = |z|ejΘ
z* = ?
z* = |z|e-jΘ
z = z1*z2
(exponential form)
z = |z1|*|z2|ej(Θ1 +Θ2)
z = z1/z2
Exponential Form
z = (|z1|/|z2|)ej(Θ1-Θ2)
To take the inverse of a complex number expressed in exponential form…
take the inverse of the magnitude and negate the phase
What is the formula to find roots of complex numbers?
j, j2, j3, j4
Prove that cos(-x) = cos(x)
&
sin(-x) = -sin(x)
Convert this into cartesian coordinates