Complex Numbers Flashcards
(x1+iy1)+(x2+iy2)=
(x1+x2)+i(y1+y2)
(x1+iy2)-(x2+iy2)=
(x1-x2)+i(y1-y2)
(x1+iy1)(x2+iy2)=
(x1x2-y1y2)+i(x1y2+x2y1)
z=x+iy
ż=
x-iy
żz=|z|^2=
x^2 + y^2
z1/z2=
(z1xż2)/(z2xż2)
|z|=r=
sqrt(x^2 + y^2)
(Modulus/Absolute Value)
When x>0 find arg(p)
tan(p)=y/x
When x<0 find arg(p)
tan^-1(y/x) + pi = p
Trigonometric/Polar form
z=
r(cosp + isinp)
De moivre formula
(cosp+isinp)^n = cos(np)+isin(np)
Take z=cosp+isinp and w=cosa+isina
zw=
arg(zw)=
cos(p+a)+isin(p+a)
arg(z)+arg(w)
Take z=cosp+isinp and W=R(cosa+isina)
zW=
R(cos(p+a)+isin(p+a))
arg(z^n)=
narg(z)
Z=R1(cosp+isinp) and W=R2(cosa+isina)
ZW=
|ZW|= |Z||W|=
arg(ZW)=
ZW=R1R2(cos(p+a)+isin(p+a))
=R1R2
arg(Z)+arg(W)
|Z^n|=|Z|^n
arg(Z^n)=
n x arg(Z)
on the unit circle only
z^-1 =
ż
z=r(cosp+isinp)
z^n=
r^n (cosnp+isinnp)
z^-1=
(1/r^2)(ż)
Z=R1(cosp+isinp) and W=R2(cosa+isina)
Z/W=
(R1/R2)(cosp-a+isinp-a)