Complex Numbers Flashcards
i=
√-1
i squared
-1
Addition of complex numbers
( a + bi) + (c + di) =
( a + bi) + (c + di) = (a+c) +(b+d) i
Subtraction of complex numbers
( a + bi) - (c + di) =
(a-c) +(b-d) i
Multiplication of complex numbers
( a + bi) (c + di) =
(ac-bd) + (ad+bc) i
What is the conjugate of x + iy
x -iy
Division of complex numbers
( a + bi) /(c + di) =
( a + bi) /(c + di) by (c -di)/ (c -di)
Modulus, length, magnitude of z= x+ iy is
√x² + y²
Argument of Z= x+ iy for each quadrant
1st quad: tan inverse (y/x)
2nd quad: tan inverse (y/x) + pi
3rd quad: tan inverse (y/x) -pi
4th quad: tan inverse (y/x)
Complex number algebraic form
Z= x + iy
Complex number polar / trigonometric form
Z = r (cosθ + isinθ)
Complex number exponential form
Z= re ^(iθ)
where e^(iθ)=cosθ+sinθ
square root of a complex number procedure
√x+iy = x+iy
square both sides
then equate real and imaginary parts
quadratic equation in terms of z using roots
z²-(sum of roots)z +products of roots