COMPLEX ANALYSIS Flashcards
1
Q
~~~
```limz–>zo f(z) = ♾️ <=> ?
A
lim 1/f(x) = 0
2
Q
lim f(z) = w0 {where z –> ♾️} <=> ?
A
lim f(1/z) = w0 {where z –> 0}
3
Q
CAUCHY REIMANN EQUATION for Differentiablity
A
Suppose f(z) be a complex value function with f(z) = u+iv, if f is differentiatble at a point zo belongs to C, then
- fy = ifx
- Ux = Vy and Uy = -Vx at zo
- f’(zo) = Ux + iVx
4
Q
If ez = 1 then, z=?
A
z = 2nπi
5
Q
If ez = -1 then, z=?
A
z = (2n+1)πi
6
Q
If ez = i then, z=?
A
z = (4n+1)(π/2)i
7
Q
If ez = -i then, z=?
A
z = (4n+3)(π/2)i
8
Q
Continuity of a function
A
A function f(z) is continuous at point z° iff lim z–> z° f(z) exists and equals to f(z°).
|z-z°| < s. => |f(z) - f(z°)| < E