CM1 Flashcards
LJ ax
________
Γ, A ⊢ A
LK ax
________
Γ, A ⊢ Δ, A
LJ cont
Γ, A, A ⊢ Δ
____________
Γ, A ⊢ Δ
LK contright
Γ ⊢ Δ, A, A
____________
Γ ⊢ Δ, A
LK contleft
Γ, A, A ⊢ Δ
____________
Γ, A ⊢ Δ
LJ ⊤right
_______
Γ ⊢ ⊤
LK ⊤right
_______
Γ ⊢ Δ, ⊤
LJ ⊥left
_________
Γ, ⊥ ⊢ Δ
LK ⊥left
_________
Γ, ⊥ ⊢ Δ
LJ ¬right
Γ, A ⊢
________
Γ ⊢ ¬A
LK ¬right
Γ, A ⊢ Δ
________
Γ ⊢ Δ, ¬A
LJ ¬left
Γ ⊢ A
__________
Γ, ¬A ⊢ Δ
LK ¬left
Γ ⊢ A, Δ
__________
Γ, ¬A ⊢ Δ
LJ ∧right
Γ ⊢ A | Γ ⊢ B
________________
Γ ⊢ A ∧ B
LK ∧right
Γ ⊢ Δ, A | Γ ⊢ Δ, B
________________
Γ ⊢ Δ, A ∧ B
LJ ∧left
Γ, A, B ⊢ Δ
_______________
Γ, A ∧ B ⊢ Δ
LK ∧left
Γ, A, B ⊢ Δ
_______________
Γ, A ∧ B ⊢ Δ
LJ ∨right1
Γ ⊢ A
___________
Γ ⊢ A ∨ B
LJ ∨right2
Γ ⊢ B
___________
Γ ⊢ A ∨ B
LK ∨right
Γ ⊢Δ, A
___________
Γ ⊢ Δ, A ∨ B
LJ ∨left
Γ, A ⊢ Δ | Γ, B ⊢ Δ
______________________
Γ, A ∨ B ⊢ Δ
LK ∨left
Γ, A ⊢ Δ | Γ, B ⊢ Δ
______________________
Γ, A ∨ B ⊢ Δ
LJ ⇒right
Γ, A ⊢ B
___________
Γ ⊢ A ⇒ B
LK ⇒right
Γ, A ⊢ Δ, B
_____________
Γ ⊢ Δ, A ⇒ B
LJ ⇒left
Γ ⊢ A | Γ, B ⊢ Δ
___________________
Γ, A ⇒ B ⊢ Δ
LK ⇒left
Γ ⊢ Δ, A | Γ, B ⊢ Δ
___________________
Γ, A ⇒ B ⊢ Δ
LJ ⇔right
Γ, A ⊢ B | Γ, B ⊢ A
_____________________
Γ ⊢ A ⇔ B
LK ⇔right
Γ, A ⊢ Δ, B | Γ, B ⊢ Δ, A
_________________________
Γ ⊢ Δ, A ⇔ B
LJ ⇔left1
Γ ⊢ A | Γ, B ⊢ Δ
__________________
Γ, A ⇔ B ⊢ Δ
LJ ⇔left2
Γ ⊢ B | Γ, A ⊢ Δ
__________________
Γ, A ⇔ B ⊢ Δ
LK ⇔left
Γ ⊢ Δ, A, B | Γ, A, B ⊢ Δ
_________________________
Γ, A ⇔ B ⊢ Δ
LJ ∀right, x !∈ Γ
Γ ⊢ A(x)
_____________
Γ ⊢ ∀x. A(x)
LK ∀right, x !∈ Γ, Δ
Γ ⊢ Δ, A(x)
_____________
Γ ⊢ Δ, ∀x. A(x)
LJ ∀left
Γ, A(t) ⊢ Δ
_______________
Γ, ∀x. A(x) ⊢ Δ
LK ∀left
Γ, A(t) ⊢ Δ
_______________
Γ, ∀x. A(x) ⊢ Δ
LJ ∃right
Γ ⊢ A(t)
____________
Γ ⊢ ∃x. A(x)
LK ∃right
Γ ⊢ Δ, A(t)
____________
Γ ⊢ Δ, ∃x. A(x)
LJ ∃left, x !∈Γ, Δ
Γ, A(x) ⊢ Δ
_______________
Γ, ∃x. A(x) ⊢ Δ
LK ∃left, x !∈Γ, Δ
Γ, A(x) ⊢ Δ
_______________
Γ, ∃x. A(x) ⊢ Δ
LJ cut
Γ ⊢ A | Γ, A ⊢ B
_________________
Γ ⊢ B
LK cut
Γ ⊢ Δ, A | Γ, A ⊢ Δ, B
_________________
Γ ⊢ Δ, B
LJem em
Γ ⊢ ¬¬A
_________
Γ ⊢ A
Quelles priorité appliquer sur les règles ?
Appliquer d’abord les opérateurs qui ne branches pas et les quantificateurs qui skolémisent
Théorème de Herbrand
En logique classique, ∃x.P(x) ≡ il existe n termes t1, t2, . . ., tn tels que P(t1) ∨ P(t2) ∨ . . . ∨ P(tn) est vraie