Chp1 Flashcards
P(particle in [a,b])
integral a-b of mod(phi(x))^2
DEfn: normalised
integral mod(phi(x))^2 =1
Defn: position Operator: x~=
x
Defn: Momentum Operator: p~
-ih(d/dx) (partial)
Defn: Energy Operator: H=
p~^2/2m + V(x~)=-h^2(d^2/dx^2)phi+V(x)phi(x)
DEfn: Time-dep SE:
ih(dPHI/dt)=H(PHI)
ih(dPHI/dt)=-(h^2/2m)(d^2/dx^2)PHI +V(x)PHI
Defn: Stationary state: Phi(x,t)=
phi(x)exp(-iEt/h)
phi(x) is an efn of H with eval E
Conservation eqn for P(x,t):
dP/dt=-dj/dx
j(x,t)=
-ih/2m(PHIdPHI/dx-dPHI/dx*PHI)
Defn: Inner Product
phi,theta
integral phi(x)*theta(x)dx
Defn: Norm of phi
(phi,phi)=integral mod(phi)^2 dx
Defn: phi=
(phi,Hphi)
Defn: Uncertainty
(Dx)^2=
)^2>=-^2
Defn: Q is Hermitian iff
(phi,Qtheta)=(Qphi,theta)
(Q real) x~,p~ and H all fit
Prop: Cauchy-Schwarz
norm(phi)norm(theta)>=mod((phi,theta))