Cheat Sheet Flashcards
Definition of Derivative with h
lim h-> 0 f(x+h) - f(x) / h = f’(x)
Definition of Derivative with a
lim x-> a f(x) - f(a) / x-a = f’(x)
Horizontal Tangent
f’(x) = 0
numerator of dy/dx = 0
Vertical Tangent
f’(x) = undefined
denominator of dy/dx = 0
Horizontal asymptote
divide by denominator’s highest degree
lim x-> ∞ e^x
∞
lim x-> -∞ e^x
0
Average rate of change
f(b) - f(a) / b - a
Average value
1 / b - a ∫ (a to b) f(x)
Tan line
y - y1 = m (x - x1)
slope (m) of tan line for perpendicular (normal line)
- 1 / m
Critical Points
f’(x) = 0
f’(x) = undefined
Absolute Min and Max FRQ
(3)
- Endpoints
- Critical values and evaluate
- Compare all evaluations with a TABLE
Inflection Points
f” (x) = 0
changing from f”(x) > 0 to f”(x)< 0 and vice versa
F’ and F”
f’(x)> 0 = f(x) increases
f’(x)< 0 = f(x) decreases
f”(x)> 0 = f(x) concave up
f”(x)< 0 = f(x) concave down
Quoetient Rule
g(x)f ‘ (x) - f(x)g ‘ (x) / (g(x))^2
d/du e^u
e^u du
d/dx sin
cos
d/dx cos
-sin
d/dx tan
sec^2