Cheat Sheet Flashcards
Unit vector =
V/|V|
Vector direction
|AB||AC|cos(O)=AB * AC
Projection (a on to b)
proj(b) a = b ((a * b)/|b|^2)
Volume of parallelpiped
|(a * (b x c))|
Vector area =
1/2 |a x b|
Equation of the plane (method)
a(x - x0) + b(y - y0) + c(z - z0) = 0
(find normal vector n=<a, b, c>
A=(x0,y0,z0)
and plug into equation)
Parallel planes have the same ___
normal vector (n) = (a x b)
Parametric equations
T(tangent line) = < m1, m2, m3>
x(t) = x0 + mx(t)
Equation of a sphere (method)
(x-h)^2 + (y-k)^2 + (z-l)^2 = R^2
center = (h,k,l)
R = radius
(method- reverse the equation and combine x^2 + x into (x-h)^2 and add remaining onto radius)
Motion in space (method)
(v’(t) = a(t); r’(t) = v(t)
v(t) = i + j + k + c
v(0) = 0 + 0 + 0 + C = C value
T(t)- tangent line
r’(t)/ |r’(t)|
N(t)- unit normal vector
T’(t) / |T’(t)|
k(t)- curvature
|r’(t) x r’‘(t)|/(|r’(t)|^3)
Projectile motion equations
x(t) = (v0 cos(O))t
y(t) = (v0 sin(O))t
d=(v0 cos(O))t (2v0 sin(O)/g)
Equation of tangent plane (method)
find fx(x0,y0,z0) = a, fy(x0,y0,z0) = b, fz(x0,y0,z0) = c
and plug into: a(x-x0) + b(y-y0) + c(z-z0)