Chapter8 Flashcards
Adjusted predicted value
a measure of the influence of a particular case of data. It is the predicted value of a case from a model estimated without that case included in the data. The value is calculated by re-estimating the model without the case in question, then using this new model to predict the value of the excluded case. If a case does not exert a large influence over the model then its predicted value should be similar regardless of whether the model was estimated including or excluding that case. The difference between the predicted value of a case from the model when that case was included and the predicted value from the model when it was excluded is the DFFit.
Adjusted R²
a measure of the loss of predictive power or shrinkage in regression. The adjusted R² tells us how much variance in the outcome would be accounted for if the model had been derived from the population from which the sample was taken.
Autocorrelation
when the residuals of two observations in a regression model are correlated.
bi
unstandardized regression coefficient. Indicates the strength of relationship between a given predictor, i, of many and an outcome in the units of measurement of the predictor. It is the change in the outcome associated with a unit change in the predictor.
βi
standardized regression coefficient. Indicates the strength of relationship between a given predictor, i, of many and an outcome in a standardized form. It is the change in the outcome (in standard deviations) associated with a one standard deviation change in the predictor.
Cook’s distance
a measure of the overall influence of a case on a model. Cook and Weisberg (1982) have suggested that values greater than 1 may be cause for concern.
Covariance ratio (CVR)
a measure of whether a case influences the variance of the parameters in a regression model. When this ratio is close to 1 the case has very little influence on the variances of the model parameters. Belsey et al. (1980) recommend the following: if the CVR of a case is greater than 1 + [3(k + 1)/n] then deleting that case will damage the precision of some of the model’s parameters, but if it is less than 1 ‚àí [3(k + 1)/n] then deleting the case will improve the precision of some of the model’s parameters (k is the number of predictors and n is the sample size).
Cross-validation
assessing the accuracy of a model across different samples. This is an important step in generalization. In a regression model there are two main methods of cross-validation: adjusted R² or data splitting, in which the data are split randomly into two halves, and a regression model is estimated for each half and then compared.
Deleted residual
a measure of the influence of a particular case of data. It is the difference between the adjusted predicted value for a case and the original observed value for that case.
DFBeta
a measure of the influence of a case on the values of bi in a regression model. If we estimated a regression parameter bi and then deleted a particular case and re-estimated the same regression parameter bi, then the difference between these two estimates would be the DFBeta for the case that was deleted. By looking at the values of the DFBetas, it is possible to identify cases that have a large influence on the parameters of the regression model; however, the size of DFBeta will depend on the units of measurement of the regression parameter.
DFFit
a measure of the influence of a case. It is the difference between the adjusted predicted value and the original predicted value of a particular case. If a case is not influential then its DFFit should be zero - hence, we expect non-influential cases to have small DFFit values. However, we have the problem that this statistic depends on the units of measurement of the outcome and so a DFFit of 0.5 will be very small if the outcome ranges from 1 to 100, but very large if the outcome varies from 0 to 1.
Dummy variables
a way of recoding a categorical variable with more than two categories into a series of variables all of which are dichotomous and can take on values of only 0 or 1. There are seven basic steps to create such variables: (1) count the number of groups you want to recode and subtract 1; (2) create as many new variables as the value you calculated in step 1 (these are your dummy variables); (3) choose one of your groups as a baseline (i.e., a group against which all other groups should be compared, such as a control group); (4) assign that baseline group values of 0 for all of your dummy variables; (5) for your first dummy variable, assign the value 1 to the first group that you want to compare against the baseline group (assign all other groups 0 for this variable); (6) for the second dummy variable assign the value 1 to the second group that you want to compare against the baseline group (assign all other groups 0 for this variable); (7) repeat this process until you run out of dummy variables.
Durbin-Watson test
a test for serial correlations between errors in regression models. Specifically, it tests whether adjacent residuals are correlated, which is useful in assessing the assumption of independent errors. The test statistic can vary between 0 and 4, with a value of 2 meaning that the residuals are uncorrelated. A value greater than 2 indicates a negative correlation between adjacent residuals, whereas a value below 2 indicates a positive correlation. The size of the Durbin-Watson statistic depends upon the number of predictors in the model and the number of observations. For accuracy, look up the exact acceptable values in Durbin and Watson’s (1951) original paper. As a very conservative rule of thumb, values less than 1 or greater than 3 are definitely cause for concern; however, values closer to 2 may still be problematic depending on the sample and model.
F-ratio
a test statistic with a known probability distribution (the F-distribution). It is the ratio of the average variability in the data that a given model can explain to the average variability unexplained by that same model. It is used to test the overall fit of the model in simple regression and multiple regression, and to test for overall differences between group means in experiments.
Generalization
the ability of a statistical model to say something beyond the set of observations that spawned it. If a model generalizes it is assumed that predictions from that model can be applied not just to the sample on which it is based, but to a wider population from which the sample came.
Goodness of fit
an index of how well a model fits the data from which it was generated. It’s usually based on how well the data predicted by the model correspond to the data that were actually collected.
Hat values
another name for leverage.
Heteroscedasticity
the opposite of homoscedasticity. This occurs when the residuals at each level of the predictor variables(s) have unequal variances. Put another way, at each point along any predictor variable, the spread of residuals is different.
Hierarchical regression
a method of multiple regression in which the order in which predictors are entered into the regression model is determined by the researcher based on previous research: variables already known to be predictors are entered first, new variables are entered subsequently.