Chapter 7 - Gross Neuroanatomy Flashcards

1
Q

Rostral

A

Anterior

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Caudal

A

Posterior

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Three anatomical planes of section

A

Midsaggital plane along the midline, other lines parallel to this are sagittal. Horizontal plane and coronal plane.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

The Cerebellum

A

Contains as many neurons and the cerebrum

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Dorsal Roots

A

Carry information from the PNS to the CNS

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Ventral roots

A

Carry information from the CNS to the PNS

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Dorsal Root Ganglia

A

One per each spinal nerve. Contains the cell body of receptors.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Afferent neurons

A

Carry sensory information to the CNS. AKA sensory neurons

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Efferent Neurons

A

Carry information from the CNS to the body. Also known as motor neurons.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

The Visceral PNS

A

The autonomic nervous system, It consists of the neurons that innervate the internal organs, blood vessels and glands. Relay information like pressure and oxygen levels. Command the contraction and relaxation of smooth muscle.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Cranial Nerves

A

There are 12 pairs of cranial nerves which arise from the brain stem and innervate mostly within the head. They were numbered by Galen from anterior to posterior. Some are part of the CNS and some are part of the somatic or visceral PNS. Many cranial nerves contain a cocktail of different axons that perform different functions.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

The Meninges

A

Three membranes that protect the CNS from the overlying bone. The outermost layer is the dura mater, a tough inelastic bag that surrounds the brain and spinal cord. Under the dura mater is the arachnoid membrane, a blood vessel riddled membrane. If a blood vessel bursts here a pool of blood can develop between the arachnoid membrane and dura mater, called a subdural hematoma. A hematoma can compress the CNS and impair function, pressure is relieved by drilling a hole to drain (sometime called trepanning). The third layer is called the pia mater (gentle mother), it is thin and adheres closely to the brain, blood vessels in this membrane also dive into the brain tissue. There is a salty fluid (CSF - Cerebrospinal fluid) filled space between the pia mater and arachnoid membrane called the subarachnoid space.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Choroid Plexus

A

The ventricular system is comprised of four ventricles and filled with CSF (produced by choroid plexus tissue in ventricles).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Computer Tomography

A

CT scans are x-ray images visualizing slices of tissue. Requires x-radiation (MRI does not).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Nucleus

A

A collection of neurons, usually deep in the brain and distinguishable. Think about a ‘nut’ of neurons deep in the brain.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Substantia

A

A group of related neurons deep in the brain, but with fuzzier borders than nuclei.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

Locus

A

A small, well defined group of cells in a specific location.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Ganglion

A

Ganglia are collections of neurons in the PNS, can be thought of as ‘knots’ of neurons. Only one structure labelled ganglia exists in the CNS, the basal ganglia.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Nerve

A

A bundle of axons in the PNS, only one collection of CNS axons is called a nerve, the optic nerve.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Bundle

A

A collection of axons that run together but do not necessarily have same origin or destination. Capsule - A collection of axons that connect the cerebrum with the brain stem

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Commissure

A

Any collection of axons that connect one side of the brain with the other side

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Lemniscus

A

A tract that meanders through the brain like a ribbon.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Ectoderm

A

Part of an early embryo disk, the entirety of the nervous system and skin is derived from this layer. It turns into the neural plate at about 17 days from conception in humans. It then forms a neural groove, which eventually fuses to produce a neural tube. At this point the entire CNS is a sheet of cells on this wall. The neural crest is a bit of neural ectoderm that gets pinched off in forming the neural tube, it is lateral to the neural tube and will form the entirety of the CNS.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Neurelation

A

The process where the neural plate becomes the neural tube, occurs about 22 days after conception in humans.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

Prosencephalon

A

The most rostral vesicle, also called the forebrain.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

Mesencephalon

A

Middle primary vesicle, becomes the midbrain (aka mesencephalon).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

Rhombencephalon

A

The most caudal primary vesicle, also called the hindbrain. Connects to the caudal neural tube, which gives rise to the spinal cord.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

Forebrain Differentiation

A

For graphical representation see pg. 184. The prosencephalon splits off into four vesicles, one pair is called the telencephalic vesicles and the others are the optic vesicles.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

Optical Development

A

The optic vesicle will differentiate into an optic stalk and optic cup. The optic stalk will become the optic nerves and the optic cups will become retinas. This means that the optic nerve and retinas are part of the CNS rather than the PNS.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

Telencephalon

A

The two telencephalon vesicles that form will become the two hemispheres of the cerebrum. It grows posteriorly, meaning that they will reach back towards the hindbrain. Olfactory bulbs will develop from the telencephalon. The walls of the telencephalon differentiate into two structures, the cerebral cortex and the basal telencephalon (also the amygdala). The diencephalon differentiates into the thalamus and hypothalamus. See graph in notes of Lecture 5 for this.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

The lateral and third ventricle

A

The lateral ventricles are surrounded on the dorsal side by the telencephalon while the third vesicle is surrounded by the diencephalon (which the telencephalon and the optic vesicles branch out of).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

Midbrain differentiation

A

The midbrain differentiates into an upper and lower part. The tectum (upper) and the tegmentum (lower). The CSF filled space inbetween constricts into a narrow channel called the cerebral aqueduct. The cerebral aqueduct connects rostrally to the third ventricle of the diencephalon

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

Colliculus

A

The tectum of the midbrain differentiates into four bumps. Two are called the superior colliculus (optic tectum controls eye movement) and two are called the inferior colliculus (channels input from ear to thalamus).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

Tegmentum

A

The tegmenum contains the black substantia nigra and red nucleus. These two things are involved in control of voluntary movement.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
35
Q

Hindbrain Differentiation

A

The hindbrain differentiates into the pons, cerebellum (from the rhombic lips) and medulla oblongata. The cerebellum and pons develop from the rostral half of the hindbrain (metencephalon) and the medulla develos from the caudal half (myencephalon). The CSF tube here becomes the fourth ventricle which is continuous with the cerebral aqueduct of the midbrain.

36
Q

Pons

A

The pons serves as a massive switchboard connecting the cerebrum with the cerebellum

37
Q

Medullary Pyramids

A

Most axons which terminate here enter caudally from the pons, originating in the cerebral cortex and part of the corticospinal tract. Each pyramidal tract (corticospinal tract) crosses from one side of the midline to the other. Crossing is called decussation and this crossing is called pyramidal decussation. This crossing explains why the left cortex is responsible for the right side of the body and vice versa. The medulla is a major station for sensory input and damage to it usually leads to anesthesia (sense loss).

38
Q

Spinal cord Differentiation

A

This is straightforward and ends up with a bone encased system. Spinal grey matter surrounds the spinal canal and is divided into three zones, the dorsal horn (afferent axons), the intermediate zone (interneurons), and the ventral horn (efferent axons). White matter columns extend from the dorsal (back) side of the spinal cord.

39
Q

The Central Sulcus

A

Marks the boundary between the frontal lobe and parietal lobe.

40
Q

Layers of the Cerebral Cortex

A

Layer 1 is separated from the pia mater by a layer that lacks neurons (molecular layer). At least one layer contains pyramidal cells that emit large dendrites, called apical dendrites that extend up to layer 1 where they form multiple branches.

41
Q

Three Cortex and Rhinal Fissure

A

There are three cortex, hippocampus, olfactory cortex and neocortex (only found in mammals). The neocortex is separated from the olfactory cortex a sulcus called the Rhinal fissure.

42
Q

Korbinian Brodmann

A

Constructed a cytoarchitectural map of the neocortex. Each area having common cytoarchitecture is given a number. Different areas have different functions (structure affects function).

43
Q

3 Telencephalic Nuclei

A

Basal Ganglia
Amygdala
Hippocampus

44
Q

2 Structures that differentiate from the prosencephalon

A

Telencephalon

Diencephalon

45
Q

Two structures that differentiate from the diencephalon

A

Thalamus

Hypothalamus

46
Q

4 Structures that differentiate from the telencehalon

A

Cortex
Basal Ganglia
Amygdala
Hippocampus

47
Q

Two structures that differentiate from the mesencephalon

A

Tectum (upper midbrain)

Tegmuntum (lower midbrain)

48
Q

Two structures that differentiate from the rhombencephalon

A

Pons

Medulla

49
Q

Coronal

A

Frontal

50
Q

What sense does the pons deal with

A

Sensory representation of face

51
Q

What does the cerebellum come from

A

Pons, the pons has many many projections into the cerebellum

52
Q

Midbrain has ____ fibres on its ventral side

A

Motor fibres

53
Q

Superior Colliculi

A

Upper bumps on midbrain near the cerebellum. For eye movement

54
Q

Inferior Colliculi

A

Lower bumps on midbrain near the cerebellum. For midbrain relay of auditory system.

55
Q

Each sense has its own _____ of the thalamus

A

Nuclei

56
Q

Hypothalamus’ Main function

A

Endocrine, especially with the pituitary gland, involved in autonomic NS.

57
Q

Basal Ganglia

A

Part of the cerebrum, important for the initiation of movement

58
Q

Hippocampus

A

Learning and spacial navigation

59
Q

Central Sulcus

A

Divides frontal lobe (motor) from parietal (sensory)

60
Q

Sylian Fissure

A

Shows where language processing takes place

61
Q

Cerebral Aqueduct

A

Communicates between 3rd and 4th ventricles. Opens in pons (4th ventricle) and then turns into the central canal down the spinal cord

62
Q

How many ventricles and their names

A

Lateral ventricles (2), 3rd ventricle and 4th ventricle (total of 4)

63
Q

Dura Mater Sense

A

Has some receptors that can protect pain around outer layer of brain and spinal cord

64
Q

Subachnoid Space Size and features

A

Rather large with blood vessel projections. Also contains cerebrospinal fluid and is continious with centricles

65
Q

Choroid Plexus is Innervated with _____ to do ______

A

Blood vessels, to filter blood in lateral ventricles

66
Q

Contaminants in CSF

A

Can be detected anywhere, eg. lumbar puncture penetrates dura mater and sample will show contaminants and can detect tumor in brain

67
Q

Ectoderm will become

A

Brain and skin

68
Q

Mesoderm will become

A

Skeleton and skeletal muscle system

69
Q

Neural tube will become

A

Entire nervous system

70
Q

Neural crest will become

A

Entire PNS

71
Q

Internal capsule is a part of the _____ and relays all ____

A

Thalamus and sensory information

72
Q

Topographic Connectivity

A

Sometimes called point to point connectivity. Pathways between sense organs to the thalamus and then to cerebral cortex. Projecting to cells that are caudal (close) to each other and at a higher level

73
Q

4 Kinds of cortex

A

Neocortex (6 layers)

Olfactory cortex

Hippocampal Cortex (misnomer)

Entorhinal Cortex (inbetween hippocampal and neocortex, relays between them, involved in memory, especially during sleep and dreams).

74
Q

Layer IV of the neocortex

A

Frequently the input layer

75
Q

Layers V and VI of the neocortex

A

Frequently output layers

76
Q

Cortical column

A

Vertical unit of processing

77
Q

Brodmann

A

Early 20th century anatomist who stained human brains with nissl and mapped out cortical territories

78
Q

Brodmann’s areas (how many)

A

52

79
Q

Sensorimotor areas get _____ in ____ mammals

A

Smaller in higher mammals

80
Q

Angiogram

A

Basically x-ray of blood vessels. Major blood vessel layout very similar from person to person. Can find intracranial Berry aneurysms with this, these form at junctions between blood vessels.Usually harmless but fatal if they hemorrhage.

81
Q

CT Scans

A

Computer tomography, slice x-rays, good for looking at brain bone trauma. Can find tissue density

82
Q

MRI

A

Magnetic Resonance Imagining. Protons of water in brain excited to higher energy state by radio waves. When radio waves are stopped the protons give off detectable resonance energy.

83
Q

Structural MRI

A

Snapshot of 3D brain

84
Q

Functional MRI (fMRI)

A

Targets deoxygenated (hemoglobin?) to find areas that are using the most amount of energy.

85
Q

Magnetic Resonance Spectroscopy

A

Can target any molecule you want and show density

86
Q

Diffusion Tensor Imaging

A

Shows white matter density, often combined with fMRI

87
Q

PET scans

A

Positron Emission Tomography, measures blood supply during task (colourful!)