Chapter 6 Flashcards
Hyperbolic cosine
(e^x + e^-x) / 2
Hyperbolic sine
(e^x - e^-x) / 2
Hyperbolic tangent
(sinhx / coshx ) = (e^x - e^-x) / (e^x + e^-x)
Hyperbolic cotangent
(coshx / sinhx) = (e^x + e^-x) / (e^x - e^-x)
Hyperbolic secant
(1 / coshx) = 2 / (e^x + e^-x)
Hyperbolic cosecant
(1 / sinhx) = 2 / (e^x - e^-x)
1 =
cosh^2(x) - sinh^2(x)
cosh(-x)
cosh x
sinh (-x)
sinh x
tanh (-x)
tanh x
cosh (x + y)
coshx coshy + sinhx sinhy
sinh (x + y)
sinhx coshy + coshx sinhy
cosh 2x
cosh^2(x) + sinh^2(x)
sinh 2x
2sinh(x)cosh(x)
cosh^2 (x)
(cosh(2x) + 1) / 2
sinh^2 ( x )
(cosh(2x) - 1) / 2
sech^2(x)
1 - tanh^2(x)
csch^2(x)
coth^2(x) - 1
derivative of coshx
sinhx
derivative of sinhx
coshx
derivative of tanhx
sech^2(x)
derivative of cothx
-csch^2(x)
derivative of sechx
-sech(x)tanh(x)
derivative of cschx
-csch(x)coth(x)
intergral of sinh(x)dx
coshx + C
integral of cosh(x)dx
sinhx + C
intergral of sech^2(x)dx
tanhx + C
integral of csch^2(x)dx
-cothx + C
intergral of sech(x)tan(x)dx
-sechx + C
intergral of csch(x)coth(x)dx
–cschx + C
intergral of tanh(x)dx
ln cosh(x) + C
intergral of coth(x)dx
ln |sinh(x)| + C
intergral of sech(x)dx
arctan(sinhx) + C
intergral of csch(x)dx
ln | tanh(x / 2) | + C