Chapter 4 Test Flashcards
Product Rule Formula
d/dx[f(x)g(x)] = f(x)d/dx[g(x)] + g(x)*d/dx[f(x)]
Quotient Rule Formula
d/dx[f(x)/g(x)] = {g(x)d/dx[f(x)] - f(x)d/dx[g(x)]}/[g(x)]^2
Steps to finding absolute max and min
- Find f’(x)
- Find C.N’s (set f’(x) equal to 0) *If domain error, set denominator equal to 0
- Find y values for C.N’s *If C.N’s are on open interval, skip this step
- Find y values for interval points
- Highest=max, Lowest=min
Steps to finding equation of tangent line
- Find f’(x)
- Plug x value of point into f’(x) to find slope
- Put point and slope value into point slope equation (y-y1) = m(x-x1)
Steps to finding all the values where the tangent line of f(x) is #
- Find f’(x)
- Set f’(x) = #
- Solve for x
Steps for finding when the impact will happen
- Set f(x) = 0
2. Solve for t
Steps to finding the instantaneous velocity/velocity at impact
- Find f’(x)
2. Plug t value (found in time of impact problem) into f’(x)
Steps to finding total average velocity
Ex: t = 1, t = 3
- [s(3) - s(1)]/(3-1) = ?
Steps to finding the average velocity at a given point
Ex: [1,2]
- [f(2) - f(1)]/(2-1)
Steps to finding the slope of a tangent line using limit process of f(x) at (c,f(c))
Ex: f(x) = 3 - 2x, (-1,5)
- {[3-2(-1+h)] - 5}/h
f’(x) is…
f’‘(x) is…
f’(x) is slope/velocity
f’‘(x) is acceleration