chapter 4 Flashcards

1
Q

w is in the NulA ________________?

A

if and only if Aw=0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

V is a vector space if the following properties hold:

A
  • V is closed under addition
  • V is closed under scalar multiplication
  • addition in V is commutative
  • addition in V is associative
  • additive identity (z) such that v+z=v (zero vector)
  • additive inverse (w) such that v+w=z
  • left and right distributive
  • Iv=v
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

linear combination and weights

A

c1v1 + c2v2 +….

weights => c1, c2,……

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

span

A

set of all linear combinations

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

subspace if:

A
  • contains the zero vector
  • is closed under addition
  • closed under scalar multiplication
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

linearly dependent vs linearly independent

A

linearly dependent if at least one of the vectors in S is a linear combination of the others vectors in s

linear independent if there is only the trivial solution

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

basis

A

basis if:

  • spanB=W
  • B is linearly independent
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

dimension

A

number of elements in the basis B of W

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

linear transformation

A
  • T(v+w)=T(v)+T(w)

- T(cv)=cT(v)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

kernal linear transformation T

A

kerT= {v in V | T(v)=0} subset of V

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

image of the set

A

ImT = {T(v) | v in V} subset of W

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

onto (surjective) linear transformation T

A

if ImT=W

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

one-to-one (injective) linear transformation T

A

if T(v1)=T(v2) implies v1=v2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

T:V->W is an isomorphism

A
  • T is a linear transformation
  • T is one to one
  • T is onto
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

If T is an isomorphism then we say ______________

A

V and W are isomorphic

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

skew symmetric matrices

A

satisfy the equation A + A(transpose) = [0]