Chapter 3 Flashcards

1
Q

variable

A

measure that can have more than one value

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

correlation coefficient

A

is a mathematical index that describes the direction and magnitude of a relationship.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

positive correlations

A

in which if the value of one variable goes up the value of the other rises also.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

negative correlations

A

when the value of one variable rises, the value of the other falls.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

The Regression Line

A

the best straight line through a set of points in a scatter diagram.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

homogeneity of variance

A

if all random variables in the sequence or vector have the same finiteif all random variables in the sequence or vector have the same finite variance.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

regression line describes

A

the best linear relation between the X and Y scores

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Covariance

A

the extent to which knowing the value of one variable predicts the value of the other

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

regression coefficient

A

The slope of the regression line

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

slope

A

This describes how much change is expected in Y each time X changes by one unit
- X = bY

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

intercept

A

a, is the value of Y when X = 0. That’s where the regression line crosses the Y axis.
- a = Y – b X

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

residual

A

the difference between an actual score and the predicted score (predicted by the regression line)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

principle of least squares

A

The best-fitting line keeps residuals to a minimum

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Correlation

A

is a special case of regression in which the scores of both variables are in standardized, or Z, units
- the intercept is always 0 (must be continuous)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

difference between regression and correlation

A

In correlation, both scores (X and Y) have been converted to Z scores, so they both have mean of zero. Thus the intercept between the X and Y axes will always be at 0.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Pearson product moment correlation coefficient (r)

A

is a ratio used to determine the degree of variation in one variable that can be estimated from knowledge about variation in the other variable.

17
Q

null hypothesis

A

there is no real relationship between the variables in question

18
Q

criterion validity evidence

A

the relationship between a test score and some well-defined criterion, such as scores on a job aptitude test and actual job performance

19
Q

Spearman’s rho (ρ)

A

is used to find the association between two sets of ranks (second, third, fourth, etc.)

20
Q

dichotomous

A

variables that can have only two values, like yes-no, correct-incorrect

21
Q

Biserial correlation

A

expresses the relationship between a continuous variable and an artificial dichotomous variable.

22
Q

point biserial correlation, phi (φ) coefficient.

A

If one variable is a continuous variable and the other is a true dichotomous variable (can have only one of two possible values

23
Q

tetrachoric correlation.

A

if both variables are artificially dichotomous variables

24
Q

Residual:

A

The difference between the observed and the predicted values

25
Q

Standard Error of Estimate:

A

The standard deviation of the residuals

26
Q

Coefficient of Determination:

A

The correlation coefficient squared`

27
Q

Coefficient of Alienation:

A

is a measure of the nonassociation between two variables!

28
Q

Shrinkage

A

the amount of decrease observed when a regression equation is created for one population and then applied to another.

29
Q

Cross Validation

A

Using the regression equation derived using one group of subjects to predict performance in a different group of subjects

30
Q

The Correlation-Causation Problem:

A

Just because two variables are correlated does not mean that one of them caused the variation in the other!

31
Q

Third Variable Explanation

A

Some third (unobserved) variable caused the variation in both of the other variables.

32
Q

Restricted Range

A

If the variability of a variable is extremely restricted, significant correlations may be difficult to find even if they may actually be there.

33
Q

Multivariate analysis

A

considers the relationship among combinations of three or more variables

34
Q

Discriminant analysis

A

the linear combination of variables that provides the maximum discrimination between categories

35
Q

Factor Analysis:

A

correlation between every variable and every other variable.