Chapter 2 Formulas Flashcards
Line Integral of Scalar Functions
integral from a to b of (f(r(t)) times |v(t)| dt)
ds (given r(t))
|v(t)| dt
Mass
int(c) of density ds
First moment M(yz)
int(c) of x times density ds
First Moment M(xz)
int(c) y times density ds
First Moment M(xy)
int(c) z times density ds
Center of mass
1/M times (M(yz), M(xz), M(xy))
Line Integrals of Vector Fields
int(c) F dot T ds = int(c) F dot dr = int(c) F(r(t)) dot r’(t)
Work
int(c) F dot T ds = F dot dr
Circulation of F around C (fluid which aligns with C)
int(c) F dot dr
Flux (fluid exiting through C)
int(c) F dot N ds = int(c) Pdy - Qdx
Fundamental Thm of Line Integrals
int(c) grad(f) dot dr = f(r(b)) - f(r(a))
When Curl(F) = 0
F = grad(f) (f = potential function)
Divergence of F (div(F))
d(F1)dx + d(F2)du + d(F3)dz = grad() dot F
Green’s Thm. Circulation Form
double int(curl(F) dA)