Chapter 16: Discovering Integrals Flashcards
1
Q
State the rules for the integration of basic function types
A
1) ∫k dx = kx +c
2) ∫(xⁿ) dx = xⁿ⁺¹/n+1
3) ∫(eˣ) dx = eˣ+c
4) ∫(1/x) dx = ln|x|+c
5) ∫(cosx) dx = sinx + c
5) ∫(sinx) dx = -cosx+c
2
Q
Find the exact equation of a function
f(x) if given the gradient function and a particular point on the function
A
- Integrate f’(x) to find f(x) with the arbitrary constant c
- Sub in given point to find c
- Find exact equation f(x)
3
Q
State the rules for the integration of f(ax+b)
A
1) ∫eᵃˣ⁺ᵇ = 1/a (eᵃˣ⁺ᵇ) + c
2) ∫(ax+b)ⁿ = 1/a [(ax+b)ⁿ⁺¹/n+1]
3) ∫cos(ax+b) = 1/a sin(ax+b) + c
4) ∫sin(ax+b) = -1/a cos(ax+b) + c
5) ∫1/ax+b = 1/a ln |ax+b|+ c
4
Q
Use substitution to find integrals
A
- Let one of the expressions be u
- Let the other expression be du/dx
- ∫[du/dx] dx = du
- Subsequently, ∫u du
- Integrate and sub u to find final integral