Chapter 13 - Nonlinear Flashcards
Why is there a need for non linear pgoramming?
Because a lot of models dont actually model well with only linear funciton
Formally define a non linear progrmaming problem
We want to find x=(x1, x2, …, xn) so as to maximize f(x)
subject to the constriants
gi(x) <= bi, for all i.
and
x >= 0
Give the function for profit.
Is it linear?
P(x) = xp(x) - cx
non linear.
What would be the objective function for a case where we want to produce different products at different quantities?
We need to sum the different profit functions:
Pj(xj) is the profit of selling xj amount of product j.
f(x) = ∑Pj(xj) [j=1, n]
Name some reasons for non linearity
Marginal costs can decrease or increase as production differ. This relationship requires a non linear development.
Learning curve effects resemble the marginal case, and represent non linear relationships.
In essence, every scenario where we dont have the very same price regardless of the number of units we sell, etc. It is about change.
Source of non linearity in regards to transportation?
Volume discounts.
What happens with CPF solutions in non linear programming?
no longer guaranteed to be CPF. This means that we are not able to use this simplification. Searching in the set of CPF’s is extremely easy compared to the entire other space.
Can otpimal solutions to non linear programming problems lie inside of the feasbiel region, and not just on the boundary+
Yes.
Elaborate on local vs global maxima
In general, OR algos are not able to distinguish between local maximas and global maximas. Therefore, it is absolutely crucial that we as programmers understand the conditions that can guarantee a global maxima.
How can we use calculus to tell whether our function is global or local maxima?
if the double derivative is always smaller than or equal to 0, we know that we have a guaranteed global maxima.
We are talking about concave vs convex functions. Concave functions are always “not smiling”. Convex are smiling.
What is the concave “sum” theorem?
The sum of concave functions will always be concave.
This also applies to convex functions.
Hva er substitusjonsmetoden?
Når vi har kun en likhetsfunksjon som restriksjon kan vi substituere den inn i målfunksjonen.
max Z = 10x1 - 0.02x1^2 + 12x2 - 0.03x2^2
s.t. 0.2x1 + 0.1x2 = 40
Kan skrive restriksjonen som:
0.2x1 = 40 - 0.1x2
x1 = 200 - 0.5x2
Så setter vi dette inn i målfunksjonen:
Z = 10(200 - 0.5x2) - 0.02(200-0.5x2)^2 + 12x2 - 0.03x2^2
Nå kan vi derivere med hensyn på x2.
∂z/∂x2 = -5 - 0.02(200-0.5X2) + 12….
= 11 - 0.07x2
Setter derivat lik 0.
x2 = 157.14
Vi finner x1 ved å bruke substitusjonen vi brukte tidligere. Finner da at x1 = 121.5.
Da kan vi finne Z, og Z = 2064.78
IMPORTANT: Vi vet ikke hvordan punkt dette egentlig er. Dette må vi finne ut av. Vi trenger andre derivert. Vi sier at vi “kontrollerer om det er maximum eller minimum eller sadelpunkt ved å bruke andrederivert”.
∂2z/∂x2^2 = -0.07, som er strikt negativt, sim betyr at vi har et globalt maximumpunkt. Funksjonen en konkav.
Hva definerer en konkav funksjon?
Kurve som har strengt fallende stigningstall.
Hva definerer en konveks funksjon?
Kurver som har strengt økende stigningstall.
Hva er en konvekskombinasjon?
En konvekskombinasjon er:
x’’’ = lambda x’’ + (1 - lambda)x’, lambda between 1 and 0.
x’’’ er altså mulig alle punkter mellom x’ og x’’, bestemt av hva lambda er.