Chapter 11 Review (Test 2) Flashcards
Ratio Test for Absolute Convergence
p = lim of k approaches infinity of absolute value of a sub k +1 divided by a sub k
If p > 1 , converges for x=0
If p < 1, converges for all x
If p involves x, converges for (a-R, a+R)
P-Series Test
If p>1, then converges, alternating converges
If 0 < p less than or equal to 1 then diverges, alternating converges
Taylor/Maclaurin Polynomials
sigma of k = 0 to infinity of f to the k derivative of a over k factorial times (x-a) to the k
Maclaurin series
E to the x
and E to the -x
1 + x + (x^2)/2! + (x^3)/3! +….
1 - x + (x^2)/2! - (x^3)/3! +….
Maclaurin series
sinx
x - (x^3/3!) + (x^5/5!) - …
Maclaurin series
cosx
1 - (x^2)/2! + (x^4)/4! - …
Maclaurin series
1 / 1-x
1 / 1+ x
1 + x + x^2 + x^3 + …
1 - x + x^2 - x^3
Maclaurin series
ln(1+x)
x - (x^2/2) + (x^3)/3 - …
Maclaurin series
inverse tan
x - (x^3/3) + (x^5/5) - ….
Error
If alternating, convergent series,
absolute value of error is less than or equal to absolute value of next term
Langrange’s Form of Remainder
If not alternating and convergent;
Absolute value of R sub n of x is less than or equal to the absolute value of M over (n+1)! times (x-a)to the n+!
M = max value of f to the n+1 of x