Chapter 10 Flashcards
Nth term
Lim as n → ∞ of aₙ = 0, inconclusive
Lim as n → ∞ of aₙ ≠ 0, diverges
Geometric
needs to be geometric
|r|<1, converges
|r| ≥1, diverges
S = a/1-r
P-series
p > 1, converges
0 < p < 1, diverges
harmonic series 1/n diverges
Integral
f(n) must be continuous, positive, and decreasing
if integral converges, converges
if integral diverges, diverges
Direct Comparison
0 ≤ aₙ ≤ bₙ
if bₙ converges, aₙ converges
if aₙ diverges, bₙ diverges
Limit Comparison
aₙ > 0 and bₙ > 0
lim n—> ∞ aₙ/bₙ = L
L has to be finite and positive
If above is true, both series converge or diverge
Ratio
lim n —> ∞ |aₙ₊₁/aₙ| < 1, converge
lim n —> ∞ |aₙ₊₁/aₙ| > 1, diverge
lim n —> ∞ |aₙ₊₁/aₙ| = 1, inconclusive
Alternating Series
If |aₙ₊₁| < |aₙ| and lim n —> ∞ aₙ = 0, converges
E^x polynomial
1+x+x^2/2!+x^3/3!+x^4/4! … + x^n/n!
1/1-x polynomial
1+x+x^2+x^3 + … + x^n
sin(x) polynomial
x-x^3/3!+x^5/5!-x^7/7!+ … + (-1)^n • x^2n+1/(2n+1)!
cos(x) polynomial
1-x^2/2!+x^4/4!-x^6/6!+ … + (-1)^n • x^2n/(2n)!