Ch1 Probability Fundamentals Flashcards
1
Q
Discrete probability characterized by:
A
pmf = p(x)
2
Q
pmf = p(x) satisfies :
A
Kolmogorov Axioms
- p(x) = Pr(X=x)
- p(x) ge 0 for all x
- sum (p(x)) =1 over all x
3
Q
cdf =
A
cumulative distribution function
F(x) = Pr(X le x)
F(x) = sum(p(X le x))
4
Q
E[X]=
A
sum(x*p(x)) over all x (continuous case use integrals)
5
Q
E[X]= words
A
mean X, long run average, 1st absolute moment
6
Q
Var(X)=
A
= E[(X - E[X] )^2) ]
= E[X^2] - E[X]^2
7
Q
Var(X)= (computational form)
A
E[X^2] - E[X]^2
8
Q
A
9
Q
A
10
Q
A
11
Q
A
12
Q
A
13
Q
A
14
Q
rth absolute moment
A
E[Xr]
15
Q
rth central moment
A
E[(X-µ)r]
16
Q
Var(X)=
A
σ2 = E[(X-µ)2]
17
Q
A
18
Q
A
19
Q
marginal pmf
A