Ch. 2 Groups Flashcards

1
Q

En gruppe G bliver kaldt abelian hvis

A

x o y = y o x for alle x,y \in G

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Givet et sæt G, og en komposition *: G x G -> G er en gruppe hvis

A

1: Composition er associative:
s1 * (s2 * s3) = (s1 * s2) * s3

2: Der er et neutralt element e \in G s.t.
e * s = s samt
s * e = s

3: For hvert s \in G er der et invers element t \in G s.t.
s * t = e samt
t * s = e

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

The order of G is

A

|G| the number of elements in G

How well did you know this?
1
Not at all
2
3
4
5
Perfectly