CFA1 Flashcards
IFRS DB plan service cost treatment
PNL
IFRS DB plan service cost treatment
PNL
GAAP DB plan service cost treatment
Current: PNL & Past: OCI
IFRS DB plan Net I/E treatment
PNL
GAAP DB plan Net I/E treatment
PNL
IFRS/GAAP DB plan Net I/E treatment
PNL
IFRS/GAAP DB plan remeasurement treatment
OCI
Net I/E formula IFRS (DBPP)
Net A/L x DR
Net I/E formula GAAP (DBPP)
Net A x E(R) - Net L x DR
Return Remeasurement IFRS/GAAP
Act(R) - E(R)
Where E(R) is based off DR in IFRS but forecasted E(R) for GAAP
IFRS/GAAP DR is based off?
Yield on IG Corp Bond
MLM - HCM: EFP & EMP
EFP & EMP = Intermediate (?)
MLM - HCM: RFP & EMP
RFP & EMP = CCY DEPR.
MLF - LCM Based off?
Trade flows
MFM - HCM based off?
Capital flows
MFM - LCM EMP & EFP
Imports up, CCY down
MFM - LCM RMP & RFP
Imports down, CCY up
MFM - HCM RMP & EFP
CCY APPR.
Significant sources of daily TE (ETFs)
Composition (eg restrictions or universe size)
Note: Fees and expenses play a minimal role, and taxes usually do NOT play a role
NH (Neutral Hedge) formula
NH = - port.delta / sec.delta
Where port.delta = sec x delta
And is +ve for long -ve for short
Delta increases as options go more…
ITM (ceteris paribus)
ATM call option delta at maturity is equal to
0.5
E(Δ in DPS) formula
E(Δ in DPS) = [E(EPS) x target - D_0] x 1/n
CRM is used when
Subsidiary functional CCY differs from parents reporting CCY
TRM is used when
Subsidiary functional CCY is the same as the parents reporting CCY
CRM - CTA adj. on what statement?
B/S (CTA)
CTA adj steps
CRM only - start with I/S
1. Calc NI (new RE) with avg rate
2. Calc Assets with CR
3. Calc Liabilities with CR
4. Calc Equity with HR
5. Add new RE (from step 1)
6. Calc amt to balance = CTA
I/S translation G/L steps
TRM only - start with B/S
1. Calc TA with TRM conv.
2. Calc L+E with TRM conv.
3. Calc plug to balance
4. Calc I/S using TRM conv.
5. Use plug (step 3) as NI
6. Ant to balance = G/L
CRM conventions
I/S use AR (including NI)
B/S use HR for CS
B/S use CR for everything else
TRM conventions B/S
Monetary use CR
Inventory use RWP (or HR)
PPE use HR
Total = sum of calcs
Note: the question may or may not say when inv or PPE was purchased - look out for this
TRM conventions I/S
Sales = AR
COGS = RWP (or HR)
SG&A = AR
DEP = HR
Int & tax = AR
Plug (G/L) = calc to balance
NI = RE taken from B/S plug
What formula is this:
(AP)⋅PVA⋅(Rfix)⋅N(d1) −(AP)⋅Xr⋅PVA⋅N(d2)
Payer Swaption
Why? Because you are long the floating rate. If it goes up, the market rate at expiration (Rfix) will be higher than the strike agreed at inflation. The swaption is ITM when the floating rate (and consequently the market swap rate) increases relative to your strike.
What formula is this:
(AP)⋅PVA⋅Xr⋅N(d2)−(AP)⋅PVA⋅Rfix⋅N(d1)
Receiver swaption
Why? Because you are short the floating rate. If it goes down, the market rate at expiration (Rfix) will be lower than the strike agreed at inflation. The swaption is ITM when the floating rate (and consequently the market swap rate) decreases relative to your strike.
M&C who engage in independent practice while still employed must:
- Describe the types of service they will render
- The expected duration
- The compensation
They should not render services until they receive consent from their employer
To detect SC in an AR model
Look for t-stats of the autocorrelations of the residuals being greater than the critical value
What models is the DW test not suitable for?
AR models!
Steps to run a DF test for a unit root
- Subtract the first lag from each side of the AR(1) mode
- Replace b1 with g1 = (b1-1)
- H0: g1 = 0 ; Ha: g1 < 0
H0: times series has a unit root and is non-covariance st. (I.e., is a random walk)
Ha: No unit root and covariance st.
MRL formula
MRL = b0/(1-b1)
IFRS ending DBPP asset formula
BGN x [1+act(R)] + contributions - benefits paid
IFRS ending DBPP liability formula
BGN x (1+DR) + benefits earned - benefits paid
IFRS total period pension cost formula
TPPC = Curr. Serv. + Int. + Past - Act.Gain + Act.Loss - Act(R)
Where Curr. Serv. Cost could be named pension benefits earned, employee benefits, opex, current cost, etc.
Note: Act. Is both actuarial and actual above. And Curr., Int., and Past, are all costs.
The grant date fair value of an RSU is
It’s market value and it does not change over time.
As such, RSUs will be a greater I/S expense than a ESO
What is ignored when combining B/Ss in the acquisition method and why?
Ignore equity. Why? Because it’s folded into the concept of net assets which was used to get goodwill
Partial GW formula
PGW= FV(paid) - NIA x %.of.acq
Full GW formula
FGW = amt.paid/%.of.acq - NIA
Where does the difference between FGW & PGW ultimately end up?
It funnels down to NCI
NCI - FGW formula
NCI.F = amt.paid/%.acq x (1 - %.acq)
NCI - PGW
NCI.P = NIA x (1 - %.acq)
In a steady state what is the MPK equal to?
MPK = r
Capital is just being paid it’s required rate of return
In a steady state Y/K is a
Constant
In a steady state, what affect will capital deepening have on the economy?
None. Both k (d.K/L) and y (d.Y/L) grow at theta/(1-a)
Steady state rate of growth of output formula
Theta/(1-a) + d.L/L
If UIRP and CIRP hold
Then forward rate parity would prevail - the fwd fx rate would equal the expected future spot fx rate, serving as an unbiased predictor
CDS upfront pmts
- Work out the spread for the bond in question
- Work out the risk-free yield
- Work out difference
- Relative to the standardised premiums (1% & 5%), if under seller pays upfront premium.
And vice versa. Why? Because the buyer would be paying more premium for less risk. Therefore the seller must compensate them at initiation to bring the contract value to zero.
The CTD on a CDS is chosen based off?
Any debt obligation issued by the borrower ranked equivalently in priority of claims (p.p) or higher!! Then choose CTD
Change in value of CDS (for buyer)
d.spread x Duration x NA
N(d1) + N(-d1) =
100%
CDF
Surrender value is the amount
The policy holder receives if they surrender the policy - it is equal to the current cash value or NPV based off actuarial estimates
Life settlements in hedge funds aim to
Buy life settlement’s from brokers with assumptions that lead them to believe the original policy holder will die earlier than the policy was priced at - therefore making a profit
In a replication strategy what how do you make it so the cash outlay is equal to the position you’re attempting to replicate?
You must invest or borrow the remaining balance
If bias error is high and variance error is high, what could a modeler use to reduce the variance error?
Use cross validation error.
You would not aim to penalise complexity because complexity is not an issue if the bias error is high (not an overfitting issue)
Roll return formula
(Near - far)/near x %.being.rolled
Merger arb via options
Long bond, short put
Viewed as selling insurance on a given acquisition. I.e., if it is successful (no crash), the fund collects the premium for taking the risk. If it fails, you lose on the long and short.
When are American and European calls options the same price?
When they pay no dividends.
Logically, they will never be called early. This is because the exercise value will be less than the valuation (I.e, you’re better off selling it).
What does conditional heteroskedasticity cause in the test stats?
It understates variance, therefore, over stating (inflating) t-stats
Equity method of accounting
~20 - 50% or “significant influence, but no control”
Conversion Value formula
P0 x CṞ
Conversion Ratio form.
CṞ = Par / CP
CP & CR are fixed
MC$ formula
MC$ = PV0 / CṞ
MCP form.
MCP = MC$ - P0
Weighted Harmonic mean vs Xh
WHM = 1 / £(w/x)
Xh = n / £(1/x)
EVA formula
EVA = MVIC - [WACC x BVIC]
Combined Ratio
Comb.R. = UWE/NPW + L&L.a.E/NPE
Value of a Swap formula
V_s = (rfx_t - rfx_o) x £DF x NA
Value of an Equity Swap
V_eq.s = NA.(St/So) - NA.(rfx x £DF + DF_L)