calc3 pt 2 Flashcards
finding domain
sqrt >| 0
ln() > 0
1/() =! 0
{(x,y) | …}
lim (x,y,z) -> …
solve for the limit
do not forget to write lim everytime
find fx fy fxx fyy
easy but be mindful of the product rule
equation of tangent plane
1) plug in x and y into equation to find z
2) find the gradient f(x,y,z)
3) f(x,y,z) sub in x y and z values
4) x(x-Px)+y(y-Py)+z(z-Px)
5) use the cd to cancel out fractions
dz /dt
dz/dt = dz/dx * dx/dt +dz/dy * dy/dt
sub and simplify
compute the directional derivative
1) f(x,y) find the gradient
2) plug in points in gradient and simplify
3) find u using vector : v/|v|
4) Duf P(x,y) = gradient (dot product) vector u
find and classify critical points
1) fx =0
2) fy =0
3) list critical points
4) fxx =
5) fyy =
6) fxy = fyx =
7) D = fxx * fyy -fxy^2
8) check each critical point by substitution
9) D(a,b) > 0 , fxx (a,b) < 0 : local max
D(a,b) > 0 , fxx (a,b) > 0 : local min
D(a,b) < 0 : saddle point
lagrange
1) set the constraint to g(x,y) … = 0
2) find the gradient of f(x,y) and g(x,y)
3) delta f = lambda *delta g
4) solve for lambda for f and g gradient
5) set lambdas equal to each other
6) plug y ‘s into g
7) find points
8) check points by plugging them into f
9) decide your max and min
10) f has an abs max of .. @ (,) on g and f has an abs min of .. @ (,) on g