Business Analytics Module 2 Flashcards

1
Q

Population

A

The complete set of individuals or items in which an analyst or researcher is interested. When it is difficult to learn about every member of a population, random samples are often drawn from a population and analyzed in order to draw inferences about the population.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Sample

A

A group of observations selected from a population. We generally compute statistics based on a random sample to help us estimate the parameters of a population.

If a sample is sufficiently large and representative of the population, the sample statistics, x and s, should be reasonably good estimates of the population parameters, μ and σ, respectively.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Normal Distribution

A

The normal distribution is a symmetric, bell-shaped continuous distribution, with a peak at the mean. A normal distribution is completely determined by two parameters, its mean and standard deviation. Approximately 68% of a normal distributions outcomes fall within one standard deviation of the mean and approximately 95% of its outcomes fall within two standard deviations of the mean. The mean, median and mode of a normal distribution are equal.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

One standard deviation

A

About 68% of the probability is contained in the range reaching one standard deviation away from the mean on either side, that is, P(μ-σ≤ 𝑥 ≤μ+σ)≈ 68%.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Two standard deviations

A

About 95% of the probability is contained in the range reaching two standard deviations (1.96 to be exact) away from the mean on either side, that is, P(μ-2σ≤ 𝑥 ≤μ+2σ)≈ 95%.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Three standard deviations

A

About 99.7% of the probability is contained in the range reaching three standard deviations away from the mean on either side, that is, P(μ-3σ≤ 𝑥 ≤μ+3σ)≈ 99.7%

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Z-value

A

The z-value of a data point is the distance in standard deviations from the data point to the mean. Negative z-values correspond to data points less than the mean; positive z-values correspond to data points greater than the mean.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Central Limit Theorem

A

A theorem stating that if we take sufficiently large randomly-selected samples from a population, the means of these samples will be normally distributed regardless of the shape of the underlying population. (Technically, the underlying population must have a finite variance.)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Distribution of Sample Means

A

The probability distribution of the means of all randomly-selected samples of the same size that could be taken from a population. The Central Limit Theorem states that for sufficiently large randomly-selected samples, the distribution of sample means approximates a normal distribution. The standard deviation of the distribution of sample means is equal to the standard deviation of the population divided by the square root of the sample size. If we do not know the standard deviation of the population, we can estimate it using the sample standard deviation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Confidence Interval for a Population Mean

A

A range constructed around a sample mean that estimates the true population mean. The confidence level of a confidence interval indicates how confident we are that the range contains the true population mean. For example, we are 95% confident that a 95% confidence interval contains the true population mean. The confidence level is equal to 1 – significance level.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

n≥30

A

For large samples (n≥30), the lower and upper bounds are calculated using the following equation:
x ± z*s/sqrt(n)

The function CONFIDENCE.NORM calculates the margin of error, which we add and subtract from the sample mean to find the confidence interval.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

n<30

A

For small samples (n<30), the lower and upper bounds are calculated using the following equation:
x ± t*s/sqrt(n)
For small samples, we use a t-distribution, which is shorter and wider than a normal distribution. The t- distribution provides a wider range, a more conservative estimate of where the true population mean lies.
The function CONFIDENCE.T calculates the margin of error, which we add and subtract from the sample
mean to find the confidence interval.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Dummy Variable

A

A variable that takes on one of two values: 0 or 1. Dummy variables are used to transform categorical variables into quantitative variables. A categorical variable with only two categories (e.g. “heads” or “tails”) can be transformed into a quantitative variable using a single dummy variable that takes on the value 1 when a data point falls into one category (e.g. “heads”) and 0 when a data point falls into the other category (e.g. “tails”). For categorical variables with more than two categories, multiple dummy variables are required. Specifically, the number of dummy variables must be the total number of categories minus one.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Find Cumulative Probability

A

=NORM.DIST(x, mean, standard_dev, cumulative)
• When cumulative is set to “TRUE”, NORM.DIST finds the cumulative probability, that is, the probability of
being less than or equal to the specified value x, for a normal distribution with the specified mean and standard deviation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Find Cumulative Probability Z Value

A

=NORM.S.DIST(z, cumulative)
• When cumulative is set to “TRUE”, NORM.S.DIST finds the cumulative probability, that is, the probability of
being less than or equal to the specified value z for a standard normal distribution.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Find X Value Corresponding to a Given Cumulative Probability

A

=NORM.INV(probability, mean, standard_dev)
Returns the corresponding x-value on a normal distribution for the specified mean, standard deviation, and cumulative probability.

17
Q

Find margin of error using a normal distribution for a specified alpha, n≥30

A

=CONFIDENCE.NORM(alpha, standard_dev, size)
Returns the margin of error using a normal distribution for a specified alpha, standard_dev, and size. Alpha is
the significance level, which equals one minus the confidence level (for example, a 95% confidence interval would correspond to the significance level 0.05).

18
Q

Find margin of error using a normal distribution for a specified alpha, n<30

A

=CONFIDENCE.T(alpha, standard_dev, size)

Returns the margin of error using a t-distribution for a specified alpha, standard_dev, and size.

19
Q

Dummy Variable Creation

A

=IF(logical_test,[value_if_true],[value_if_false])

Returns value_if_true if the specified condition is met, and returns value_if_false if the condition is not met.