BRS Flashcards
1
Q
- The increase shown at point A is caused by the effect of (A) estrogen on the anterior pituitary (B) progesterone on the hypothalamus (C) follicle-stimulating hormone (FSH) on the ovary (D) luteinizing hormone (LH) on the anterior pituitary (E) prolactin on the ovary
A
- The answer is B [X E 3; Figure 7.19]. Curve A shows basal body temperature. The increase in temperature occurs as a result of elevated progesterone levels during the luteal (secretory) phase of the menstrual cycle. Progesterone increases the set-point temperature in the hypothalamic thermoregulatory center.
2
Q
- Blood levels of which substance are described by curve B? (A) Estradiol (B) Estriol (C) Progesterone (D) Follicle-stimulating hormone (FSH) (E) Luteinizing hormone (LH)
A
- The answer is C [X E 3; Figure 7.19]. Progesterone is secreted during the luteal phase of the menstrual cycle.
3
Q
- The source of the increase in concentration indicated at point C is the (A) hypothalamus (B) anterior pituitary (C) corpus luteum (D) ovary (E) adrenal cortex
A
- The answer is D [X A, E 1; Figure 7.19]. The curve shows blood levels of estradiol. The source of the increase in estradiol concentration shown at point C is the ovarian granulosa cells, which contain high concentrations of aromatase and convert testosterone to estradiol.
4
Q
- The source of the increase in concentration at point D is the (A) ovary (B) adrenal cortex (C) corpus luteum (D) hypothalamus (E) anterior pituitary
A
- The answer is C [X E 3; Figure 7.19]. The curve shows blood levels of estradiol. During the luteal phase of the cycle, the source of the estradiol is the corpus luteum. The corpus luteum prepares the uterus to receive a fertilized egg.
5
Q
- The cause of the sudden increase shown at point E is (A) negative feedback of progesterone on the hypothalamus (B) negative feedback of estrogen on the anterior pituitary (C) negative feedback of follicle-stimulating hormone (FSH) on the ovary (D) positive feedback of FSH on the ovary (E) positive feedback of estrogen on the anterior pituitary
A
- The answer is E [X E 2; Figure 7.20]. Point E shows the luteinizing hormone (LH) surge that initiates ovulation at midcycle. The LH surge is caused by increasing estrogen levels from the developing ovarian follicle. Increased estrogen, by positive feedback, stimulates the anterior pituitary to secrete LH and follicle-stimulating hormone (FSH).
6
Q
- A 41-year-old woman has hypocalcemia, hyperphosphatemia, and decreased urinary phosphate excretion. Injection of parathyroid hormone (PTH) causes an increase in urinary cyclic adenosine monophosphate (cAMP). The most likely diagnosis is (A) primary hyperparathyroidism (B) vitamin D intoxication (C) vitamin D deficiency (D) hypoparathyroidism after thyroid surgery (E) pseudohypoparathyroidism
A
- The answer is D [VII B 3 b]. Low blood [Ca2+] and high blood [phosphate] are consistent with hypoparathyroidism. Lack of parathyroid hormone (PTH) decreases bone resorption, decreases renal reabsorption of Ca2+ , and increases renal reabsorption of phosphate (causing low urinary phosphate). Because the patient responded to exogenous PTH with an increase in urinary cyclic adenosine monophosphate (cAMP), the G protein coupling the PTH receptor to adenylate cyclase is apparently normal. Consequently, pseudohypoparathyroidism is excluded. Vitamin D intoxication would cause hypercalcemia, not hypocalcemia. Vitamin D deficiency would cause hypocalcemia and hypophosphatemia.
7
Q
- Which of the following hormones acts on its target tissues by a steroid hormone mechanism of action? (A) Thyroid hormone (B) Parathyroid hormone (PTH)(C) Antidiuretic hormone (ADH) on the collecting duct (D) β1 adrenergic agonists (E) Glucagon
A
- The answer is A [II E; Table 7.2]. Thyroid hormone, an amine, acts on its target tissues by a steroid hormone mechanism, inducing the synthesis of new proteins. The action of antidiuretic hormone (ADH) on the collecting duct (V2 receptors) is mediated by cyclic adenosine monophosphate (cAMP), although the other action of ADH (vascular smooth muscle, V1 receptors) is mediated by inositol 1,4,5-triphosphate (IP3 ). Parathyroid hormone (PTH), β1 agonists, and glucagon all act through cAMP mechanisms of action.
8
Q
- A 38-year-old man who has galactorrhea is found to have a prolactinoma. His physician treats him with bromocriptine, which eliminates the galactorrhea. The basis for the therapeutic action of bromocriptine is that it (A) antagonizes the action of prolactin on the breast (B) enhances the action of prolactin on the breast (C) inhibits prolactin release from the anterior pituitary (D) inhibits prolactin release from the hypothalamus (E) enhances the action of dopamine on the anterior pituitary
A
- The answer is C [III B 4 a (1), c (2)]. Bromocriptine is a dopamine agonist. The secretion of prolactin by the anterior pituitary is tonically inhibited by the secretion of dopamine from the hypothalamus. Thus, a dopamine agonist acts just like dopamine—it inhibits prolactin secretion from the anterior pituitary.
9
Q
- Which of the following hormones originates in the anterior pituitary? (A) Dopamine (B) Growth hormone–releasing hormone (GHRH) (C) Somatostatin (D) Gonadotropin-releasing hormone (GnRH) (E) Thyroid-stimulating hormone (TSH) (F) Oxytocin (G) Testosterone
A
- The answer is E [III B; Table 7.1]. Thyroid-stimulating hormone (TSH) is secreted by the anterior pituitary. Dopamine, growth hormone–releasing hormone (GHRH), somatostatin, and gonadotropin-releasing hormone (GnRH) all are secreted by the hypothalamus. Oxytocin is secreted by the posterior pituitary. Testosterone is secreted by the testes.
10
Q
- Which of the following functions of the Sertoli cells mediates negative feedback control of follicle-stimulating hormone (FSH) secretion? (A) Synthesis of inhibin (B) Synthesis of testosterone (C) Aromatization of testosterone (D) Maintenance of the blood–testes barrier
A
- The answer is A [IX B 2, 3]. Inhibin is produced by the Sertoli cells of the testes when they are stimulated by follicle-stimulating hormone (FSH). Inhibin then inhibits further secretion of FSH by negative feedback on the anterior pituitary. The Leydig cells synthesize testosterone. Testosterone is aromatized in the ovaries.
11
Q
- Which of the following substances is derived from proopiomelanocortin (POMC)? (A) Adrenocorticotropic hormone (ACTH) (B) Follicle-stimulating hormone (FSH) (C) Melatonin (D) Cortisol (E) Dehydroepiandrosterone
A
- The answer is A [III B 1, 2; Figure 7.5]. Proopiomelanocortin (POMC) is the parent molecule in the anterior pituitary for adrenocorticotropic hormone (ACTH), β-endorphin, α-lipotropin, and β-lipotropin (and in the intermediary lobe for melanocyte-stimulating hormone [MSH]). Follicle-stimulating hormone (FSH) is not a member of this “family”; rather, it is a member of the thyroid-stimulating hormone (TSH) and luteinizing hormone (LH) “family.” MSH, a component of POMC and ACTH, may stimulate melatonin production. Cortisol and dehydroepiandrosterone are produced by the adrenal cortex.
12
Q
- Which of the following inhibits the secretion of growth hormone by the anterior pituitary? (A) Sleep (B) Stress (C) Puberty (D) Somatomedins (E) Starvation (F) Hypoglycemia
A
- The answer is D [III B 3 a]. Growth hormone is secreted in pulsatile fashion, with a large burst occurring during deep sleep (sleep stage 3 or 4). Growth hormone secretion is increased by sleep, stress, puberty, starvation, and hypoglycemia. Somatomedins are generated when growth hormone acts on its target tissues; they inhibit growth hormone secretion by the anterior pituitary, both directly and indirectly (by stimulating somatostatin release).
13
Q
- Selective destruction of the zona glomerulosa of the adrenal cortex would produce a deficiency of which hormone? (A) Aldosterone (B) Androstenedione (C) Cortisol (D) Dehydroepiandrosterone (E) Testosterone
A
- The answer is A [V A 1; Figure 7.10]. Aldosterone is produced in the zona glomerulosa of the adrenal cortex because that layer contains the enzyme for conversion of corticosterone to aldosterone (aldosterone synthase). Cortisol is produced in the zona fasciculata. Androstenedione and dehydroepiandrosterone are produced in the zona reticularis. Testosterone is produced in the testes, not in the adrenal cortex.
14
Q
- Which of the following explains the suppression of lactation during pregnancy? (A) Blood prolactin levels are too low for milk production to occur (B) Human placental lactogen levels are too low for milk production to occur (C) The fetal adrenal gland does not produce sufficient estriol (D) Blood levels of estrogen and progesterone are high (E) The maternal anterior pituitary is suppressed
A
- The answer is D [X F 5]. Although the high circulating levels of estrogen stimulate prolactin secretion during pregnancy, the action of prolactin on the breast is inhibited by progesterone and estrogen. After parturition, progesterone and estrogen levels decrease dramatically. Prolactin can then interact with its receptors in the breast, and lactation proceeds if initiated by suckling
15
Q
- Which step in steroid hormone biosynthesis, if inhibited, blocks the production of all androgenic compounds but does not block the production of glucocorticoids? (A) Cholesterol → pregnenolone (B) Progesterone → 11-deoxycorticosterone (C) 17-Hydroxypregnenolone → dehydroepiandrosterone (D) Testosterone → estradiol (E) Testosterone → dihydrotestosterone
A
- The answer is C [Figure 7.11]. The conversion of 17-hydroxypregnenolone to dehydroepiandrosterone (as well as the conversion of 17-hydroxyprogesterone to androstenedione) is catalyzed by 17,20-lyase. If this process is inhibited, synthesis of androgens is stopped.