Biostatistics Flashcards
Definition of random variables
A variable whose observed values may be considered outcomes of an experiment and whose values cannot be anticipated with certainty before the experiment is conducted
What are the two types of random variables
1) Discrete variables (e.g. dichotomous, categorical)
2) Continuous variables
Discrete Variables
1) Can only take a limited number of values within a given range
2) Nominal: Classified into groups in an unordered manner and with no indication of relative severity (e.g., sex, mortality disease presence, race, marital status)
3) Ordinal: Ranked in a specific order but with no consistent level of magnitude of differences between ranks (e.g NYHA functional class
4) COMMON ERROR: measure of central tendency - In most cases, means and standard deviations should not be reported with ordinal data.
Continuous Variables
(Sometimes referred to as Counting Variables)
1) Continuous variables can take on any value within a given range.
2) Interval: Data are ranked in a specific order with a consistent change in magnitude between units; the zero point is arbitrary (e.g., degrees Fahrenheit)
3) Ratio: Like “interval” but with an absolute zero (e.g., degrees Kelvin, heart rate, blood pressure, time, distance
Descriptive Statistics
Used to summarize and describe data that are collected or generated in research studies. This is done both visually and numerically
Visual methods of describing data
1) Frequency distribution
2) Histogram
3) Scatterplot
Numerical methods of describing data: Measures of central tendency
a. Mean (i.e., average)
b. Median
c. Mode
Mean
i. Sum of all values divided by the total number of values
ii. Should generally be used only for continuous and normally distributed data
iii. Very sensitive to outliers and tend toward the tail, which has the outliers
iv. Most commonly used and most understood measure of central tendency
v. Geometric mean
SHOULD ONLY BE USED FOR NORMALLY DISTRIBUTED CONTINUOUS DATA
Median
i. Midpoint of the values when placed in order from highest to lowest. Half of the observations
are above and below.
ii. Also called 50th percentile
iii. Can be used for ordinal or continuous data (especially good for skewed populations)
iv. Insensitive to outliers
Mode
i. Most common value in a distribution
ii. Can be used for nominal, ordinal, or continuous data
iii. Sometimes, there may be more than one mode (e.g., bimodal, trimodal).
iv. Does not help describe meaningful distributions with a large range of values, each of which
occurs infrequently
Numerical methods of describing data
Measures of data spread and variability
a) Standard deviation
b) Range
c) Percentiles
d) Inferential Statistics
Standard Deviation
i. Measure of the variability about the mean; most common measure used to describe the spread
of data
ii. Square root of the variance (average squared difference of each observation from the mean);
returns variance back to original units (nonsquared)
iii. Appropriately applied only to continuous data that are normally or near-normally distributed
or that can be transformed to be normally distributed
iv. By the empirical rule, 68% of the sample values are found within ±1 SD, 95% are found within
±2 SD, and 99% are found within ±3 SD.
v. The coefficient of variation relates the mean and the SD (SD/mean × 100%).
Range
i. Difference between the smallest and largest value in a data set does not give a tremendous
amount of information by itself.
ii. Easy to compute (simple subtraction)
iii. Size of range is very sensitive to outliers.
iv. Often reported as the actual values rather than the difference between the two extreme values
Percentiles
i. The point (value) in a distribution in which a value is larger than some percentage of the other
values in the sample. Can be calculated by ranking all data in a data set
ii. The 75th percentile lies at a point at which 75% of the other values are smaller.
iii. Does not assume the population has a normal distribution (or any other distribution)
iv. The interquartile range (IQR) is an example of the use of percentiles to describe the middle
50% values. The IQR encompasses the 25th–75th percentile.
Inferential Statistics
- Conclusions or generalizations made about a population (large group) from the study of a sample of that
population - Choosing and evaluating statistical methods depend, in part, on the type of data used.
- An educated statement about an unknown population is commonly referred to in statistics as an
inference. - Statistical inference can be made by estimation or hypothesis testing.
Beta
- the probability of a Type II error
- the larger the Beta the lower the power of the study and the greater the chance of making a Type II error
Probability of NOT making a Type II error
Power = 1 - Beta
Type II error
- when the study states there is not difference between the groups but in reality there is a difference
Cost-minimization analysis
medications are considered to be equal, so just cost
Cost-effectiveness analysis
- Natural units (mm Hg blood pressure, blood glucose)
- Meds are not considered equal
Cost-benefits analysis
- Dollars
- Outcomes are expressed as benefit:cost or as net cost or net benefit
Cost-utility analysis
- quality of adjusted life-year (QALY)
Kaplan-Meier curve
- used to assess the “time to an event”
- many times this “event” is death or mortality, but in reality it can be any event