Bio chem Enz contd 8-3 Flashcards
This patient presents with hematuria and hemoptysis, as indicated by his dark urine with 2+ protein and blood with casts and red-tinged sputum, respectively. These findings together are often indicative of pulmonary-renal syndrome. The most common cause is ?
Goodpasture syndrome, which results from autoantibodies to type IV collagen. It leads to destruction of basement membrane proteins, primarily in the kidneys and lungs
Defects in type I collagen would lead to bone disorders, not lung and kidney disease. Issues with type III collagen would cause elasticity disorders along with cardiovascular dysfunction. Loss of type I or II pneumocytes would have little effect on kidney function, since these cells make up the alveoli. Deficiency of surfactant is associated with?
neonatal respiratory distress syndrome, and because this patient is an adult, surfactant deficiency is not likely.
Goodpasture syndrome is a type II hypersensitivity reaction to type IV collagen, characterized by dypsnea, hemoptysis, and hematuria in adult men. Because type IV collagen is incorporated into the cells of the glomerulus and lung alveoli, anti–glomerular basement memberane antibodies that cross-react with this fiber cause?
rapid damage that can lead to bleeding from these organs.
This patient’s seizures, tachycardia (heart rate of 180), and tachypnea (respiratory rate of 75) are secondary to her confirmed hypoglycemia (glucose level of 55 mg/dL). Considering her hepatomegaly and age at presentation, her hypoglycemia is most consistent with a defect in ?
storing glycogen, an important source of energy during fasting. Her low blood sugar is also responsible for her seizures. Typically, infants begin to have spaced out feedings around 6 months of age and thus are more prone to having symptoms during these periods of fasting between meals, when glycogen would be utilized. Of the glycogen storage diseases, the finding of hepatomegaly on examination is most consistent with von Gierke disease (type 1 glycogen storage disease), a genetic condition characterized by deficiency of glucose-6-phosphatase (G-6-P).
A deficiency in fructokinase is a benign, asymptomatic condition.
Galactokinase deficiency is benign and would not manifest with clinical signs beyond galactosuria or infantile cataracts.
Although galactose-1-phosphate uridyltransferase deficiency can manifest with?
hepatomegaly, signs and symptoms manifest as soon as the infant begins consuming breast milk and would not be likely to be first observed at 6 months of age.
Although a-1,6-glucosidase and a-1,4-glucosidase deficiency are glycogen storage diseases, neither disorder presents with hypoglycemia or hepatomegaly.
Glucose-6-phosphatase is required for the final step of?
gluconeogenesis and glycogenolysis. Deficiency causes von Gierke disease, in which infants may exhibit hypoglycemia, seizures, hepatomegaly, lactic acidosis, hypertriglyceridemia, and hyperuricemia.
This patient presents with weakness, increased respiratory effort, an enlarged liver on exam, and a chest X-ray suggesting an enlarged cardiac contour. Based on his presentation and X-ray, he most likely has?
Pompe disease. This disease is also called glycogen storage disease type II
In Pompe disease, or glycogen storage disease type II, lysosomal α1,4-glucosidase deficiency leads to an inability to break down stored glycogen. This results in an accumulation of glycogen in the heart, skeletal muscle, brain, and liver. Infants with Pompe disease suffer from?
hypotonia, weakness, and congestive heart failure and rarely survive beyond infancy unless they receive enzyme replacement therapy.
Patients with hyperglycemia will likely present with polyuria and symptoms of dehydration. Glucose may be stored as glycogen in cells and is also freely present in blood. However, this patient does not show the signs or symptoms of hyperglycemia.
Oxaloacetate is the first intermediate in the Krebs cycle (shown in this diagram). It is regenerated with each turn of the cycle, but is not present in excessive amounts in the cell.
Pyruvate is a component of the cellular respiration pathway (portion shown in this diagram) and an intermediate in ?
gluconeogenesis. It is not stored in cells in any significant quantity.
Disorders of the urea cycle (shown below) lead to accumulation of ammonium in the blood and result in progressive lethargy and coma. Hyperammonemia due to a urea cycle defect is not associated with myopathy and cardiomegaly, and it rarely causes hepatomegaly.
This patient initially presented with abdominal pain, nausea, and vomiting with elevated lipase levels, suggestive of acute pancreatitis. Hypertriglyceridemia (HTG) and the absence of common risk factors for acute pancreatitis make the most likely diagnosis HTG-associated pancreatitis. In isolated hypertriglyceridemia, fibrates would be the best intervention, particularly in a patient with a history of diabetes.
Studies show fibrates reduce high triglycerides, modestly increase HDL, and may reduce the progression of coronary artery disease in patients with type 2 diabetes. Fibrates decrease the levels of?
VLDL cholesterol and slightly reduce the levels of LDL. Fibrates activate peroxisome proliferator-activated receptor-α (PPARα), a nuclear transcription factor. Activated PPARα increases lipoprotein TG lysis via lipoprotein lipase and increases HDL levels.
Along with lifestyle modification, fibrates are recommended for persistently elevated triglyceride levels in patients with symptoms, including pancreatitis. Fibrates increase the activity of ?
lipoprotein lipase through activation of peroxisome proliferator-activated receptor-α (PPARα).
Statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase and reduce LDL cholesterol. Ezetimibe inhibits intestinal cholesterol absorption. Niacin, or vitamin B3, inhibits ?
lipolysis by hormone-sensitive lipase and reduces triglyceride synthesis. Bile acid sequestrants lower serum lipid levels through sequestration of charged bile acids.
This child’s combination of xanthomas on the eyelid, arcus lipoides (the opaque rings found on the corneal margin), and highly elevated LDL is pathognomonic for familial hypercholesterolemia, or type IIa familial dyslipidemia. An autosomal dominant disease, familial hypercholesterolemia is due to defects in the ?
LDL receptor, which is responsible for removing LDL from the circulation in the liver and other tissues. Without the ability to take up LDL from circulation, tissues continue to synthesize cholesterol at high levels. Patients with this condition may also present with xanthomas on the Achilles tendon. Heterozygous patients have elevated levels of LDL, which may manifest in middle age; homozygous patients may suffer a myocardial infarction in the first decade of life.
A defect in apolipoprotein C-II does not present with these symptoms and signs. A defect with apolipoprotein E would present with elevated levels of LDL, VLDL, and total cholesterol levels. Lipoprotein lipase deficiency would present with?
increased chylomicrons, and a VLDL production defect would show increase VLDL and LDL levels.
Familial hypercholesterolemia is an autosomal dominant disorder that causes defects in ?
the LDL receptor, which results in increased LDL. Common presentations include xanthomas and arcus lipoides.