Before Download Flashcards
Symmetry of Even functions
Symmetry about x=0
Symmetry of Odd Functions
Odd functions have rotational symmetry about the origin
For an odd functions F(x) = ?
F(x) = -F(-x)
For an Even Function F(x) = ?
F(x) = f(-x)
Heaviside Function (step function)
H(t){ 0, t < 0
{ 1, t >= 0
cos^2(x) + sin^2(x) = ?
cos^2(x) + sin^2(x) = 1
cos(x - (pi/2)) = ?
cos(x - (pi/2)) = sin(x)
sin(x - (pi/2)) = ?
sin(x - (pi/2)) = cos(x)
cos(A +- B) = ?
cos(A +- B) = cosAcosB -+ sinAsinB
(note the sign swaps)
sin(a +- b) = ?
sin(a +- b) = sinAcosB +- sinBcosA
cos2a = ?
cos2a = cos^2(a) - sin^2(a)
sin(2A) = ?
sin(2A) = 2sinAcosA
sin^2(A/2) = ?
sin^2(A/2) = (1-cosA)/2
cos^2(a/2) = ?
cos^2(a/2) = (1+cos(a))/2
Partial fraction decomposition rules
if denominator has : than we write
1.) distinct linear factor : one term per factor
2.) Repeated linear factor : one term per power
3.) distinct irreducible quadratic power : one linear term per factor
4.) repeated irreducible quadratic factor : one linear term per power