Bases Flashcards

1
Q

( a + b )*2

A

a2 + 2ab + b2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

a2 + 2ab + b2

A

( a + b )*2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

( a - b )*2

A

a2 - 2ab + b2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

a2 - 2ab + b2

A

( a - b )*2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

(a + b) (a - b)

A

a2 - b2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

a2 - b2

A

(a + b) (a -b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

a2 - b2

A

(a + b) (a -b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

sin²(x) + cos²(x)

A

1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

sin(a - b)

A

sin(a)cos(b) - cos(a)sin(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

cos(a - b)

A

cos(a)cos(b) + sin(a)sin(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

tan(a + b)

A

(tan(a) + tan(b)) / (1 - tan(a)tan(b))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

tan(a - b)

A

(tan(a) - tan(b)) / (1 + tan(a)tan(b))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

sin(2a)

A

2 sin(a) cos(a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

cos(2a)

A

cos²(a) - sin²(a) = 2cos²(a) - 1 = 1 - 2sin²(a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

tan(2a)

A

(2 tan(a)) / (1 - tan²(a))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

sin²(a)

A

(1 - cos(2a)) / 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

cos²(a)

A

(1 + cos(2a)) / 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

sin(a)cos(b)

A

1/2 [sin(a + b) + sin(a - b)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

cos(a)cos(b)

A

1/2 [cos(a + b) + cos(a - b)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

sin(a)sin(b)

A

1/2 [cos(a - b) - cos(a + b)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

cos(a) + cos(b)

A

2 cos((a + b)/2) cos((a - b)/2)

22
Q

cos(a) - cos(b)

A

-2 sin((a + b)/2) sin((a - b)/2)

23
Q

sin(a) + sin(b)

A

2 sin((a + b)/2) cos((a - b)/2)

24
Q

sin(a) - sin(b)

A

2 cos((a + b)/2) sin((a - b)/2)

25
Q

sin(a)cos(b)

A

1/2 [sin(a + b) + sin(a - b)]

26
Q

cos(a)cos(b)

A

1/2 [cos(a + b) + cos(a - b)]

27
Q

sin(a)sin(b)

A

1/2 [cos(a - b) - cos(a + b)]

28
Q

(sin x)’

29
Q

∫ sin x dx

A

-cos x + C

30
Q

(cos x)’

31
Q

∫ cos x dx

32
Q

(tan x)’

A

1 / cos² x

33
Q

∫ tan x dx

A

ln|cos x| + C

34
Q

cosh(x)

A

(e^x + e^(-x)) / 2

35
Q

(cosh x)’

36
Q

∫ cosh x dx

A

sinh x + C

37
Q

sinh(x)

A

(e^x - e^(-x)) / 2

38
Q

(sinh x)’

39
Q

∫ sinh x dx

A

cosh x + C

40
Q

tanh(x)

A

sinh(x) / cosh(x)

41
Q

(tanh x)’

A

1 - tanh² x

42
Q

Qu’est-ce qu’une fonction paire ?

A

Une fonction f est paire si ∀x ∈ Df, f(-x) = f(x)

43
Q

Quelle est la symétrie d’une fonction paire ?

A

Elle est symétrique par rapport à l’axe des ordonnées.

44
Q

Qu’est-ce qu’une fonction impaire ?

A

Une fonction f est impaire si ∀x ∈ Df, f(-x) = -f(x).

45
Q

Quelle est la symétrie d’une fonction impaire ?

A

Elle est symétrique par rapport à l’origine du repère.

46
Q

(e^x)’

47
Q

(ln x)’

48
Q

(x^n)’

A

n * x^(n-1)

49
Q

(1/x)’

50
Q

Énonce le théorème de bijection.

A

Soit f une fonction continue et strictement monotone sur un intervalle I. Alors, f réalise une bijection de I sur son image J, et sa réciproque f⁻¹ est continue sur J.