B1. Bahnemann Flashcards
Distribution review (Possion, Negative Binomial, Exponential, pareto)
Poisson:
- f(n) = lamda^n * exp(-lamda)/(fact(n))
- mean = variance = lamda
Negative Binomial:
-f(n) = combin(r+n-1, n) p^n (1-p)^r
- mean = pr/(1-p)
- variance = pr/(1-p)^2
Exponential
-f(x) = exp(-x/beta) / beta
-F(x) = 1- exp(-x/betal)
-mean = beta
-variance= beta^2
Pareto
-f(x) = alpha* beta^alpha / (x+beta)&^(alpha+1)
- F(x) = 1- (beta/x+Beta)^alpha
- mean = beta/ (alpha - 1)
- variance = alpha beta ^2 / [ (alpha -1)^2 (alpha -2)]
Panjer’s Recursive Algorithm
- approximate a real aggregate loss distribution given an equal-spaced discrete severity distribution
- count distribution N must satisfies f(n) = (na+b)/b * f(n-1)
- both Poisson (a = 0, b = lamda) and Negative Binomial (a = p, b = (r-1)p)satisfies this
- f(0) = 0
- fs(mh) = Prb(S=mh) = summation from K=1 to m (a+ bk/m) fx(kh)fs(mh-kh)
Expected excess claim severity
E(Xa) = e(a) = (E[X] - E[X;a])/ (1-F(a))
excess claim severity variance
VAR(X^2 a;L] = E[X^2 a;L] - E[Xa;L]^2
E[X^2 a;L] = [E(X^2;a+L) - E(x^2;a) - 2a*[E(x;a+L) - E(x;a)) ]/(1-F(a))
expected excess claim severity in a layer
E[Xa;L] = (E[X;a+L] - E[X;a]) / (1-F(a))
Expected excess claim count
E[Na] = pE[N]
excess claim count variance
Var(Na) = P^2 var(N) + p*(1-p) E(N)
Expected aggregate losses in a layer
E[S] = E[N]*[E(X;a+L) - E(X;a)]
aggregate losses in a layer variance
Var(S) = E[X^2;a+L] - E[X^2;a] -2aE[S] + r*E(S)^2
r - claim contagion parameter accounts for claims not being independent
Variance approach for risk load
risk load = k[E(X^2;L) + (var(n)/E(n)-1)*E(X;L)^2]
premium for basic limit = E(N)[(E(X;b) + K E(X^2;b)]
Standard deviation approach for risk load
risk load = k/sqrt(E[N])) * sqrt( E[X^2;L] + (var(n)/E(n)-1)*E(X;L)^2]
risk load for a layer of coverage
risk load = k* (E(X^2;a+L) - E(X^2;a) - 2a*(E(X;a+L) - E(X;a))
Straight deductible premium formula with a basic limit b and deductible b
P = Pb (1-C(d))
C(d) = (E(x;d) + F(d)ALAE)/ (E(x;b) + ALAE)
general formula P = frequency * (E[X;b] - E[x;d] + (1-F(d))ALAE) *(1+ULAE)
Franchise deductible Premium formula
P = frequency* [E(x;b) - E(x;b) + (1-F(d))(d+ALAE)) (1+ULAE)
C(d) = [E(x;d) - d(1-F(d)) + F(d) ALAE]/ (E(X;b)+ALAE)
Diminishing deductible net loss
If d<x<D, X = (D/(D-d)) * (X-d)
if x>D, X = x