B1 Flashcards

1
Q

D sin x

A

cos x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

D cos x

A

-sin x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

D tan x

A

1 / cos2x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

D arcsin x

A

1 / √1-x2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

D arccos x

A
  • 1 / √1-x2
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Standard-gränsvärden

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

D arctan x

A

1 / 1+x2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Standard-trianglar

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

ln (0)

A

-∞ (ej definierat)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

ln (1)

A

0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

ln (<1)

A

minus

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

ln (e)

A

1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

ln (-)

A

error

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

e

A

2,72

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Additionsformler
cos(x+y)
sin (x+y)

A

cos(x)cos(y)-sin(x)sin(y)
sin(x)cos(y)+cos(x)sin(y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Subtraktionsformler
cos(x-y)
sin(x-y)

A

cos(x)cos(y)+sin(x)sin(y)
sin(x)cos(y)-cos(x)sin(y)

17
Q

Definiera vad som menas med att “f är deriverbar i punkten a”.

A
18
Q

Definiera vad som menas med att “f är kontinuerlig i punkten a”.

A
19
Q

Räkneregler derivata
D(x*y)
D(x/y)
Kedjeregeln

A

Dxy + xDy
(Dxy - xDy) / (y^2)

20
Q

Logaritmregler
log(x*y)
log(x/y)
log(x^k)

A

log(x)+log(y)
log(x)-log(y)
k*log(x)

21
Q

Basbyte för logaritmer (s.137)

A
22
Q

Skriv sin(x) i cos-form
OBS! 2x

A

cos((π/2)-x)

23
Q

Skriv cos(x) i sin-form
OBS! 2x

A

sin((π/2)-x)

24
Q

cos(a)=cos(b) <=>

A

a=(+-)b+2πk

25
Q

sin(a)=sin(b) <=>

A

a=b+2πk
a=π-b+2πk

26
Q

Cirkelns ekvation

A

vilka är medelpunkterna

27
Q

Ellipsens ekvation

A

medelpunkterna resp. halvaxlarna

28
Q

log definition

A

(a-logaritmen) alog(b) = “det tal som a ska upphöjas med för att få b”.