B-lactam wall inhibitors Flashcards
Groups of drugs that inhibit the cell wall (6)
Penicillins and aminopenicillins
B-lactamase inhibitors
Cephalosporins
Carbapenems
Monobactams
Non-B-lactam cell wall inhibitors
Natural penicillins
Benzylpenicillin (penicillin G)
Benzathine penicillin G
Procaine penicillin G
Penicillin V
Long acting natural penicillins
Benzathine penicillin G
Procaine penicillin G
Mechanism of action of natural penicillins
Inhibition of peptidoglycan synthesis by blocking the transpeptidation reaction of D-alanyl-D-alanine –> acetilation of transpeptidases by binding PBPs (bactericidal)
Benzylpenicillin Penicillin G spectrum - Gram positive bacteria
- Streptococci: Rheumatic fever, endocarditis (S. viridans, S. bovis), Group B strep prophylaxis (S. agalactiae)
- Clostridium perfringens (gas gangrene)
- S. pyogenes, S. pneumoniae (w/ vancomycin + 3rd-gen cephalosporin)
- Actinomyces israelii (agent of choice)
Benzylpenicillin Penicillin G spectrum - Gram negative bacteria
- Actinomyces israelii
- Pasteurella multocida (dog/cat bites)
- Listeria monocytogenes (agent of choice, combined with gentamicin)
- n. Meningitis
Benzylpenicillin Penicillin G spectrum - Spirochetes
- Leptospira spp. (leptospirosis)
- Treponema pallidum (syphilis)
- Borrelia burgdorferi (Lyme disease)
Adverse effects of penicillin G
- IgE-mediated hypersensitivity reactions
- Direct Coombs+ hemolytic anemia
- Drug-induced interstitial nephritis
- Impaired hemostasis
Contraindications & cautions of benzylpenicilline (Penicillin G)
- Never IV with benzathine formulation → toxicity
- Uremia or Probenecid use → toxic CNS levels → seizures
- Better CSF penetration if meninges are inflamed
Resistance mechanisms of Penicillin G (benzylpenicilline)
- Ineffective against most S. aureus & S. epidermidis
- β-lactamases (penicillinases) cleave β-lactam ring
- Mutations in PBPs → decreased binding affinity
Long acting form of penicillin G
Benzathine Penicillin G = slow absorption
Difference in uses between penicillins G
- Benzylpenicillin G = severe infections (endocarditis, meningitis, syphilis)
- Benzathine penicillin G = long term therapy or prohylaxis
- Procaine penicillin G = less frequent dosing
Main contraindication of procaine penicillin
IM ONLY NEVER IV (toxicity risk)
Procaine penicillin Spectrum – Gram-Positive Bacteria
- Rheumatic fever prophylaxis
- Left-sided endocarditis (S. viridans, S. bovis) + gentamicin
- Group B strep (S. agalactiae) intrapartum prophylaxis
- Clostridium perfringens (gas gangrene)
- Streptococcus pyogenes
- Streptococcus pneumoniae (with vancomycin + 3rd-gen cephalosporin)
- Actinomyces israelii (agent of choice)
Procaine penicillin Spectrum – Gram-Negative Bacteria
- Actinomyces israelii
- Streptobacillus moniliformis
- Pasteurella multocida (dog/cat bites)
- Listeria monocytogenes (agent of choice, with gentamicin)
Procaine penicillin Spectrum – Spirochetes
- Leptospira spp. (Leptospirosis)
- Treponema pallidum (Syphilis)
- Borrelia burgdorferi (Lyme disease)
Procaine penicillin G adverse effects
- IgE-mediated hypersensitivity reactions
- Direct Coombs+ hemolytic anemia
- Drug-induced interstitial nephritis
- Impaired hemostasis
Procaine penicillin G contraindications & cautions
- NEVER IV → Risk of Hoigné syndrome (CNS toxicity: hallucinations, seizures, anxiety, dizziness)
- Risk of CNS toxicity (seizures) in uremic patients or when combined with Probenecid
- Penetrates CSF better if meninges are inflamed
Procaine penicillin G resistance mechanisms and which are resistant microorganisms
- Ineffective against most S. aureus & S. epidermidis
- β-lactamases (penicillinases) cleave β-lactam ring
- Mutations in PBPs → decreased binding affinity
Forms of administration of penicillin G
- Benzylpenicillin G = IM, IV
- Benzathine penicillin G = IM ONLY
- Procaine penicillin G = IM ONLY
Aminopenicillins
Ampicillin
Amoxicillin
Ampicillin administration
PO and IM
Mechanism of action of ampicillin
Inhibit peptidoglycan synthesis by blocking the transpeptidation reaction of D-alanyl-D-alanine
Acylates transpeptidases by binding PBPs
Without with clavulanic acid for β-lactamase protection, ampicillin is…
Penicillinase-sensitive
Gram-positive bacteria with ampicillin coverage
- Enterococci (more sensitive than to penicillin)
- Endocarditis (combine with gentamicin or ceftriaxone)
- Listeria monocytogenes
- Meningitis (combine with vancomycin + 3rd-gen cephalosporin)
- Streptococcus pyogenes
- Streptococcus pneumoniae
Gram-negative bacteria with ampicillin coverage (HHELPSS)
- Haemophilus influenzae
- Helicobacter pylori
- Escherichia coli (non-resistant strains)
- Listeria monocytogenes
- Proteus mirabilis
- Salmonella
- Shigella
Major adverse effects of ampicillin
- Hypersensitivity reactions
- Rash
- Pseudomembranous colitis (C. difficile overgrowth)
Contraindications of ampicillin
- Infectious Mononucleosis (IM) / Epstein-Barr Virus Infection → Rash
- Severe renal impairment (without dose adjustment)
- Interaction with Allopurinol (increases rash risk)
- Hepatotoxic in severe liver disease
Ampicillin adverse effects
- Increased risk of C. difficile colitis (gut flora disruption)
- Hepatotoxic in severe liver disease
Resistance mechanism of ampicillin
- β-lactamase hydrolyzes the drug → Requires β-lactamase inhibitor (e.g., clavulanate, sulbactam)
- Penicillinase cleaves β-lactam ring
Role of clavulanate or sulbactam in ampicillin use
Expands activity spectrum against β-lactamase-producing bacteria
Administration method of amoxicillin
Oral intake (food does not interfere with absorption)
Amoxicillin MOA
Inhibit peptidoglycan synthesis by blocking the transpeptidation reaction of D-alanyl-D-alanine
Acylates transpeptidases by binding PBPs
Gram-positive espectrum of amoxicillin
- Enterococci
- UTIS || combine with clavulanate- Lysteria monocytogenes
- S. pneumoniae
- S. pyogenes
- Staph
Gram-negative espectrum of amoxicillin
Gram negative bacteria
- Klebsiella
- UTIs || combine with clavulanate
- H. influenzae
- H. pylori
- E. coli (non-resistant strains)
- Proteus mirabilis
- Salmonella
- Shigella (↓↓ effective than ampicilin)
Amoxicillin works as empiric treatment for
Community acquired pneumonia
Alternative treatment to penicillin for bacterial pharyngitis
Amoxicillin + clavulanate
Adverse effects of amoxicillin
- Hypersensitivity reactions
- Rash
- Pseudomembranous colitis
When should you NOT give amoxicillin?
- History of severe hypersensitivity reactions
- Infectious mononucleosis or Epstein-Barr virus
- Severe renal impairment
- When taking ALLOPURINOL
- In hepatic dysfunction
Amoxicillin mechanism of resistance
- Hydrolization by B-lactamases
- Penicillinase cleaves B-lactam ring
Antipseudomonal carboxypenecillins
- Carbenicillin
- Ticarcillin
Admin. of carbenicillin
PO
Antipseudomonal carboxypenicillins mechanism of action
Inhibit peptidoglycan synthesis by blocking the transpeptidation reaction of D-alanyl-D-alanine
Acylates transpeptidases by binding PBPs
Antipseudomonal carboxypenicillins (carbenicillin & ticarcillin) therapeutic use
ONLY urinary infections by proteus spp. and pseudomonnas aeruginosa
Antipseudomonal carboxypenicillins (carbenicillin & ticarcillin) adverse effects
- Hypersensitivity reactions (Anaphylaxis)
- Impaired hemostasis (platelet disfunction and neutropenia)
- Hypokalemia
- Nephrotoxicity
- GI effects
- Neurotoxicity
Food absorption and aminopenicillins
Amoxicillin - doesn’t affect
Ampicillin - reduces absorption
Carbenicillin resistant microorganism
P. mirabilis
Carboxypenicillins mechanisms of resistance
- B-lactamase production
- Altered PBPs
- Efflux pumps
Resistance to carboxypenicillins by Pseudomonas aeruginosa occurs because of
Porin mutations in the gram-negative bacteria
Antipseudomonal Ureidopenicillin
Piperacillin (Puperacillin)
Acid stable carboxypenicillin (PO)
Carbenicillin
Discontinued IV carboxypenicillin
Ticarcillin
Divisions of antipseudomonal B-lactamase-inhibitors
Carboxypenicillins and ureidopenicillins
Combined with tazobactam (B-lactamase inhibitor) this antipseudomonal ureidopenicillin has the broadest spectrum of penicillins
Piperacillin
Admin form of piperacillin
IV
Piperacillin MOA
Inhibit peptidoglycan synthesis by blocking the transpeptidation reaction of D-alanyl-D-alanine
Acylates transpeptidases by binding PBPs
Therapeutic uses of piperacillin
Bacteremias
Pneumonias (P. aeruginosa, H. influenzae)
Infections following burns
UTIs (resistant to ampicillin; Klebsiella)
Mixed intra-abdominal infections (E. coli)
Piperacillin gram-positive bacteria spectrum
E. faecalis and MSSA
Gram-negative spectrum of piperacillin
- P. aeruginosa
- Enterobacterales (non-ß-lactamase producing)
- Bacteroides spp.
- H. influenzae
- B. fragilis
- E. coli
- Klebsiella
Piperacillin adverse effects
- Hypersensitivity reactions (anaphylaxia)
- Impaired hemostasis (platelet disfunction and neutropenia)
Piperacillin contraindications
Allergy to penicillins or beta-lactams
History of severe hypersensitivity reactions
Renal impairment
Concurrent use with methotrexate (increased toxicity risk)
Severe electrolyte imbalance
Dicloxacillin, Nafcillin, Oxacillin, Floxacillin and Methicillin belong to…
Penicillinase-resistant penicillins
Administration of Dicloxacillin, Nafcillin, Oxacillin, Floxacillin and Methicillin
Oral or IV
Why are penicillinase-resistant penicillins effective?
Penicillinase resistant because bulky R group (side chains) blocks access of β-lactamase to β-lactam ring and its further hydrolyzation
MOA of penicillinase-resistant penicillins
Inhibit peptidoglycan synthesis by blocking the transpeptidation reaction of D-alanyl-D-alanine
Acylates transpeptidases by binding PBPs
Gram positive spectrum of PR-Penicillins
S. aureus NON MRSA (Gram positive aerobes)
Penicillinase-resistant penicillins adverse effects
Hypersensitivity reactions
Interstitial nephritis (methicillin)
Hepatitis
Doxacillin, oxacillin, methicillin, nafcillin and foxacillin contraindications
Hypersensitivity
Mechanism of resistance of penicillin-resistant-penicillins
- Alteration of PBP binding site = reduced affinity = pathogen is not bound or inactivated by B-lactam
- MRSA alteration of PBP target is one of its main virulence factors
Penicillins are effective against amebae, plasmodia, rickettsiae, fungi or viruses
FALSE
Interaction of PROBENECID + penicillins
Decreases tubular secretion and VOD of penicillins
Penicillins stay more time on the body
Interaction between food and penicillins
Food ingestion may interfere with enteric absorption of ALL penicillins
Clavulanate acid, Clavulanate, Sulbactam, Tazobactam and Avibactam are…
B-lactamase inhibitors
ADME of clavulanate and clavulanate acid
PO and parenteral
PO form of clavulanate must be combined with
Amoxicilin
Parenteral form of clavulanate must be combined with
Ticarcilin
Older B-lactamase inhibitors (Clavulanate, sulbactam, tazobactam) MOA
Inactivate plasmid-encoded B lactamases
Older B-lactamase inhibitors fail to provide protection against…
AmpC β-lactamases encoded chromosomally in some gram-negative bacilli and carbapenemases
Amoxicillin + clavulanate target
Staphylococcus aureus
Haemophilus influenzae
Certain enterobacterales
Clavulanate/clavulanate acid adverse effects
GI disturbances; nausea and diarrhea
Hypersensitivity
Hepatotoxicity
Clavulanate contraindications
Allergy to penicillins or B lactams
Severe liver disease
Clavulanate and food
Better tolerated
Delayed absorption (not significant)
B-lactamase inhibitors + methrotexate
Reduction of renal clearance of methotrexate = increased toxicity risk
Clavulanate or sulbactam + warfarin
Enhanced anticoagulant effects = more bleeding risk
B-lactamase inhibitors + probenecid
Increased drug levels and prolonged effects
Amoxicillin + clavulanate and allopurinol increase the risk of…
Rash
Sulbactam ADME
IV or IM
Combined with ampicillin and cefoperazone
Sulbactam therapeutic use
Activity against Acinetobacter spp
Multidrug-resistant acinetobacter infections
Sulbactam adverse effects
Local injection site reactions
Hypersensitivity
Hepatotoxicity
Sulbactam and tazobactam contraindications
Allergy to penicillins or B lactams
Severe renal impairment
Resistance in sulbctam is due to:
AmpC β-lactamases and carbapenemase-producing bacteria
Tazobactam ADME
Parenteral
Combinated with piperacillin and ceftolozane
Tazobactam + piperacillin attacks
Pseudomonas aeruginosa
Enterobacterales
Anaerobes
Tazobactam + ceftolozane
ESBL-producing gram negative bacteria
Tazobactam side effects
GI disturbances
Hypersensitivity reactions
Elevated liver enzymes
Resistance to tazobactam is due to
AmpC β-lactamases and metallo-β-lactamases
New generation B-lactamase
Avibactam
Avibactam is coformulated with
Ceftazidime
Avibactam MOA
Narrow- and extended-spectrum β-lactamase (ESBL)-type
Chromosomal AmpC
KPC-type β-lactamases
Avibactam has no action against
metallo-B-lactamases
Avibactam + ceftazidime therapeutic uses
Carbapenem-resistant enterobacterales
Multidrug resistant pseudomonas aeruginosa
Avibactam adverse effects
GI disturbances
CNS effects
Hypersensitivity reactions
Avibactam contraindications
Allergy to cephalosporins
Severe renal impairment
Why is there no food interaction with sulbactam, tazobactam or avibactam?
They’re given parenterally
Cephalosporins MOA
Inhibition of cell wall synthesis but PBPs differ somewhat from penicillins
1st gen cephalosporins
Cephalexin
Cefazolin
Cefalotin
2nd gen cephalosporins
Cefaclor
Cefuroxime
Cefoxitin
Cefotetan
“Fake fox furious for tea”
3rd generation cephalosporins
Ceftriaxone
Cefotaxime
Ceftizoxime
Ceftixime
Ceftazidime
4th gen cephalosporins
Cefepime
Cefpirome
Cefpiramide
5th generation
Ceftaroline
Ceftobiprole
Ceftolozane
First generation cephalosporins adme
IV, Oral
1st gen cephalosporin of choice for surgical prophylacxis
Cephazoline - prevent S. aureus infections
Cephazolin IM is preferred for
Endocarditis
First gen cephalosporins therapeutic uses
Skin and softtissue infections
Serious infections due to MSSA
Perioperative surgical prophylaxis
UTI infections
1st gen cephalosporins have excellent effect on…
Gram positive streptococcus and MSSA
1st gen cephalosporins PEcK
Gram negative infections:
Proteus
E. coli
Klebsiella
1st gen cephalosporin resistance mechanisms
Inactivation by hydrolisis of the B-lactam ring
Susceptible to hydrolisis by inducible ampC B-lactamases in gram-negative bacteria
Inactivation by cephalosporinase
Change in PBP structure
Cephalosporin generation against upper respiratory tract infections (sinusitis, otitis media)
2nd generation
Cefoxitin/Cefotetan main therapeutic uses are:
Gynecologic infections, perioperative surgical prophylaxis
2nd generation cephalosporins have good activity against these gram positive microbes
MSSA
Streptococci
Gram negative spectrum of 2nd generation cephalosporins (HENSPEcK)
H. influenzae
E. aerogenes
Neisseria spp
Serratia marcescens
Proteus mirabilis
E. coli
Klebsiella
2nd generation meds with some activity against B. fragilis
Cefotetan
Cefoxitin
Main resistance mechanism of 2nd generation cephalosporins
Susceptible to hydrolysis by inducible ampC B-lactamases in gram-negative bacteria (Citrobacter, Enterobacter and Pseudomonas)
ADME of 3rd generation cephalosporins
IV
Ceftriaxone = IM
3rd gen cephalosporins that cross BBB
Ceftriaxone and cefotaxime
Main therapeutic uses of 3rd gen cephalosporins
Community acquired pneumonia
Meningitis
Urinary tract infections Streptococcal endocarditis Gonorrhea
Severe Lyme disease
3rd gen cephalosporin that treats borrelia burdorferi lyme disease gonorrhea
Ceftriaxone (IM)
3rd generation cephalosporin that treats Pseudomonaz
CeftAZidime
3rd gen drugs that treat meningitis by S. pneumoniae
Ceftriaxone
Cefotaxime
3rd generation resistance mechanisms
Alterations in two PBPs (1A and 2X)
Change in transpeptidase (PBP) structure
hHydrolysis by inducible ampC B-lactamases in gram-negative bacteria
Cephalosporinases
Antipseudomonal cephalosporins
4th generation
Cefepime
Cefpirome
Cefpiramide
ADME of 4th generation cephalosporins
Parenteral IV
4th gen cephalosporins main therapeutic use
Nosocomial infections: pneumonia, meningitis, urinary tract infections, intraabdominal infections
4th gen cephalosporins have excellent activity against
H. influenzae
Proteus
E. coli
Klebsiella
Serratia
Neisseria
streptococci
MSSA
Pseudomonas aeruginosa
Cephalosporin generation that works against MRSA
5th
5th gen cephalosporins (IV)
Ceftaroline
Ceftobiprole
Ceftolozane
Ceftaroline fosamil therapeutic uses
MRSA
Penicillin-resistant S. pneumoniae
Gram negative activity
Ceftobiprole medocaril
MRSA
Penicillin resistant S. pneumoniae
Pseudomonas spp.
Generation susceptible to resistance because of EFFLUX, hydrolysis by ESBLs and to a significant extent to KPCs
4th
Generations that cross BBB
3rd and 4th
Organisms not covered by 1-4th generation are LAME
Listeria
Atypical chlamydia, mycoplasma
MRSA
Enterococci
At high doses, —— can cause encephalopathy
Cefepime
Cephalosporin generations with good CSF penetration
3 and 4
Ceftaroline is mostly used for:
Community acquired pneumonia
Skin and soft tissue infections
Most important cephalosporins adverse effects
Autoinmune hemolytic anemia
Vitamin K deficiency
Disulfram-like reaction (flushing, tachycardia, hypotension)
Neurotoxicicty
Positive coombs reaction
Granulocytopenia
Effects of cephalosporins in neonates
Hyperbilirrunemia or jaundice - ceftriaxone
Administer cefotaxime
Cephalosporins + aminoglycosides cause
NEPHROTOXIC EFFECT
When using cephalosporins for intra-abdominal infections, ——- is required
Anaerobic coverage (ex. metronidazole)
C. difficile and campylobacter jejuni can be treated with cephalosporins
NORRRRR
Patients with mononucleosis or epstein barr should not take
Ampicillin
Ampicillin + allopurinol
Increases rash risk
Combo para tratar la meningitis por l. monocytogenes
Ampicillin + vancomycin + 3rd gen cephalosporin
tx. empirico para meningitis por s. pneumoniae
Vancomicina + ceftriaxona
Tx. para meningitis por H. influenzae
Ceftriaxona (3rd gen cephalosporine)
Resistance mechanism against Ampicillin
Hydrolization by ß-lactamases
Penicillinase cleaves the ß-lactam ring
Based on the resistance mechanisms, what must be applied with ampicillin
A b-lactamase inhibitor (clavulanate, tazobactam or sulbactam)
Happens when you add clavulanate or sulbactam to ampicillin
Activity spectrum against resistan microorganisms expands
Aminopenicillin that is not affected by food ingestion
Amoxicillin
Effective concentrations of oral ——– stay 2x as long in plasma than ———
amoxicillin
ampicillin
Effect of probenecid on amoxicillin
Delays excretion
Aminopenicillins MOA
Inhibition of peptidoglycan synthesis by blocking the transpeptidation reaction of D-alanyl-D-alanine
Carbapenems and Monobactams are…
B-lactam wall inhibitors
-nems (imipenem, meropenem, ertapenem and doripenem) are classified as
Carbapenems
Carbapenems MOA
Bind to PBP’s to disrupts bacterial cell wall synthesis and dead to susceptible microorganisms
Are carbapenems bactericidal or bacteriostatic?
Bactericidal
In general, carbapenems are used for nosocomial infections such as:
UTIs
LRTI (pneumonia)
Intraabdominal and gynecologic infections
Skin, soft tissue, bone and joint infections
why is imipenem combined with cilastatin?
Cilastatin inhibits tubular degradation and extends t1/2
Why are cilastatin + relabactam added to imipinem?
Cilastatin extends half life
Relebactam contains a ß-lactamase inhibitor against carbapenemases
Imipinem’s primary role
Empiric treatment of serious infections in hospitalized patients at risk for resistant pathogens
Carbapenems act against:
Gram positive cocci
Gram negative rods
Anaerobes
Imipenem’s main gram positive targets
Staph aureus
Streptococcus (pneumoniae, pyogenes, agalactiae)
Enterococcus faecalis
Imipenem’s gram negative targets (EKEPPA)
Enterobacterales
E coli
Klebsiella
Enterobacter
Proteus
Pseudomonas
Acinetobacter
Imipinem is not effective against
MRSA and C. difficile
Imipinem’s anaerobe sprectrum
Bacteroides
Clostridium
Fusobacterium
Drug combo reserved for treatment of gram negative pathogens resistant to all or almost all other antibiotics
Imipinem + relabactam
Imipinem adverse effects
Nausea
Vomiting
Seizures
Hypersensitivity
Meropenem is less active then imipinem when treating —— but more active when treating ——–
Gram + (enterococcus)
Gram negative
Preferred carbapenem for the treatment of meningitis
Meropenem
Meropenem + vaborbactam are reserved for
Multi-drug resistant gram negative pathogens
Therapeutic use of meropenem
Hospital-onset infections when cephalosporin or penicillin-resistant organisms are suspected
RTI
GI
UTIs
Meropenem is less likely to cause —— but SHOULD NOT be administered with ——-
Seizures
Valproic acid
Meropenem is combined with ——– ro reduce resistance
Vaborbactam (ß-lactase inhibitor)
Ertapenem administration
IV or IM
Ertapenem MOA
Inhibits bacterial cell wall synthesis by binding to penicillin-binding proteins (PBPs)
Ertapenem has ——– activity
Bactericidal
Ertapenem therapeutic uses
Complicated
UTIs
Skin and soft tissue inf.
CAP
Pelvic infections
Ertapenem and doripenem adverse effects
GI distress
Headache
Injection side reactions
Hypersensitivity
Anaphylaxis
Seizures
Ertapenem and doripenem should not be administered in cases of
Hypersensitivity to other ß-lactams
Seizure disorders like epilepsy
Severe renal impairment
Ertapenems and doripenems major resistant issue
Carbapenemase-producing Enterobacterales (CPE)
Other resistance mechanisms to Ertapenem and Doripenem
Efflux pumps
Porin mutations
ESBL-producing bacteria
Gram positive spectrum of ertapenem and doripenem
S. pneumoniae
S. pyogenes
S. agalactiae
MSSA
Gram negative spectrum of ertapenem KHEEP
Klebsiella pneumoniae
Haemophilus influenzae
E. coli
Enterobacter
Proteus mirabilis
Bacteroidis fragilis, prevotella and fusobacterium are anaerobes treated with
Ertapenem or Doripenem
Doripenem ADME
IV ONLY
Doripenem ADME
Inhibits bacterial cell wall synthesis by binding to penicillin-binding proteins (PBPs)
Doripenem has —– action with —— activity
Bactericidal
Broad spectrum
Doripenem therapeutic uses
Complicated intra abdominal infections
Complicated UTIs
Nosocomial pneumonia
Indicated ß-lactam antibiotic for pyelonephritis
Doripenem
Doripenem is highly effective against…
Multi-drug resistant gram negative infections
Carbapenem used for pseudomonas aeruginosa
Meropenem
Regarding gram - bacteria, doripenem is more active against ——- than ertapenem
Pseudomonas aeruginosa
Aztreonam is classified as a
Monobactam
Aztreonam ADME
IV, IM, inhalation
B-lactam used in cystic fibrosis patients
Aztreonam (inhalation formulation)
Aztreonam MOA
Inhibits bacterial cell wall synthesis by binding to penicillin-binding proteins (PBPs)
Aztreonam is bactericidal against…
Gram negative susceptible bacteria
Aztreonam is stable against most β-lactamases, but not effective against
ESBL or carbapenemase-producing bacteria
T or F: Aztreonam has high activity against gram-positive bacteria or anaerobes
F
Aztreonam is highly active against
H. influenzae
Inhaled aztreonam is used for
Reduction of pseudomonas-associated pulmonary exacerbations in cystic fibrosis patients
Monobactam used for serious gram negative infections like pneumonia, UTIs and sepsis
Aztreonam
Monobactam used as an alternative for penicillin-allergic patients
Aztreonam
Aztreonam causes ——- especially in infants and young children
Hepatotoxicity (elevated liver enzymes)
Aztreonam contraindications
Hypersensitivity against ceftazidime
Severe renal impairment
ESBL (extended-spectrum β-lactamases) and Carbapenemases (KPC, NDM, OXA-type enzymes) are resistance mechanisms of
Aztreonam
Aztreonam bacterial spectrum KHEEPP
Klebsiella pneumoniae
H. influenza
E. coli
Enterobacter
Proteus
Pseudomonas
Preferred treatment for ESBL infections
Carbapenems
Should be avoided in ESBL infections
Penicillins, most cephalosporins, aztreonam