B&B Cell Bio Flashcards
Which cell cycle checkpoint is blocked by p53?<div><br></br></div><div>{{c1::G1 to S}}</div>
“<div><i>Hence a mutation can cause uncontrolled cell division</i><br></br></div><div><i>Also blocked by hypophosphorylated Rb <br></br></i><div><img></img></div></div>”
Which cell cycle checkpoint is blocked by hypophosphorylated Rb?<div><br></br></div><div>{{c1::G1 to S}}</div>
“<div><i>Hence a mutation can cause uncontrolled cell division</i><br></br></div><div><img></img></div>”
<div><b>Rhabdomyoblasts</b> are characterized by positive IHC staining for <b>{{c1::desmin}}</b> and <b>{{c1::myogenin}}</b> </div>
“<i>desmin is an intermediate filament of muscles cells; </i><i>malignant rhabdomyoblasts cause embryonal </i><b><i>rhabdomyosarcoma</i></b><div><b><i><br></br></i></b></div><div><i>myogenin<b> </b>is a transcription factor present in immature muscle cells</i></div>”
<div>What process is used by <b>mismatch repair enzymes</b> to distinguish between <u>old</u> and <u>new</u> <b>DNA strands</b> in prokaryotes?</div>
<div><br></br></div>
<div>{{c1::DNA methylation}}</div>
template strand <b>cytosine</b> and <b>adenine</b> are methylated for this very purpose
<div>What process takes <b>DNA</b> and makes more <b>DNA</b>? </div>
<div><br></br></div>
<div>{{c1::Replication}}</div>
“<img></img>”
<div><div>What process takes <b>DNA</b> and makes <b>RNA</b>? </div><div><br></br></div><div>{{c1::transcription}}</div></div>
“<img></img>”
<div><div>What process takes <b>RNA</b> and makes <b>protein</b>? </div><div><br></br></div><div>{{c1::translation}}</div></div>
“<img></img>”
<div><div><div>DNA & RNA are made of <b>{{c1::nucleotide monophosphates}}</b> connected via a(n) {{c2::<b>phosphodiester</b>}} bond</div></div></div>
“<img></img>”
<div>One feature of the <b>genetic code</b> is that it is {{c1::degenerate/redundant}}: most amino acids are coded by <i>multiple</i> codons </div>
<i><u>exceptions</u>: methionine and tryptophan are encoded by only 1 codon (AUG and UGG, respectively)</i>
<div>One feature of the <b>genetic code</b> is that it is {{c1::commaless, nonoverlapping}}: it is read from a fixed starting point as a continuous sequence of bases</div>
<i><u>exceptions</u>: some viruses</i>
<div>One feature of the <b>genetic code</b> is that it is {{c1::universal}}: genetic code is conserved throughout evolution</div>
<i>exceptions: mitochondria (in humans)</i>
<div>What does <b>AUG</b> encode for in <i>eukaryotes</i>?</div>
<div><br></br></div>
<div>{{c1::Methionine (start codon)}}</div>
<i>rarely GUG is a start codon as well</i>
<div><div>What does <b>AUG</b> encode for in <i>prokaryotes</i>?</div><div><br></br></div><div>{{c1::N-formylmethionine, or fMet (start codon)}}</div></div>
<i>fMet also stimulates neutrophil chemotaxis</i>
<div>Which <u>three</u> sequences of bases are mRNA <b>stop codons</b>? </div>
<div><br></br></div>
<div>{{c1::<b>UGA</b>, <b>UAA</b>, <b>UAG</b>}}</div>
“<i>”“<b>U G</b>o <b>A</b>way, <b>U</b> <b>A</b>re <b>A</b>way, <b>U</b> <b>A</b>re <b>G</b>one””</i> “
<div>The {{c1::origin of replication}} is a particular consensus sequence of base pairs in a genome where <b>DNA replication begins</b> </div>
“<div><i>may be <u>single</u> (prokaryotes) or <u>multiple</u> (eukaryotes)</i> </div><div><img></img></div>”
<div>{{c1::AT}}-rich sequences are found in <b>promoters</b> and <b>origins</b> <b>of replication</b></div>
AT has 2 bonds vs 3 in GC-easier to break apart
<div>The {{c1::replication fork}} is a Y-shaped region along the DNA template where <b>leading</b> and <b>lagging strands are synthesized</b> </div>
“<img></img>”
<div>Which enzyme is responsible for <b>unwinding the DNA template</b> at the replication fork? </div>
<div><br></br></div>
<div>{{c1::Helicase}} </div>
“<img></img>”
<div>{{c1::Single-stranded binding}} proteins <u>prevent</u><b> DNA strands from reannealing</b> during replication </div>
“<img></img>”
<div>Which enzyme is responsible for <b>relaxing the DNA strand</b> by creating single- or double-stranded breaks in the DNA helix to add/remove supercoils? </div>
<div><br></br></div>
<div>{{c1::Topoisomerase}} </div>
“<div><img></img></div>”
<div>Which enzyme is responsible for <b>making an RNA primer</b> on which DNA polymerase III can initiate replication (<u>prokaryotes</u>)? </div>
<div><br></br></div>
<div>{{c1::Primase}}</div>
“<img></img>”
<div>Which enzyme is responsible for <b>elongating the DNA strand</b>? </div>
<div><br></br></div>
<div>{{c1::DNA polymerase (specifically, DNA polymerase III in <u>prokaryotes</u>)}}</div>
“<div><i>DNA polymerase uses <b>dNTP</b> substrates to add <b>monophosphates</b>; In the process, inorganic pyrophosphate (PPi) is given off</i></div><div><i><img></img></i></div>”
<div><div><div><b>{{c2::DNA}} polymerase</b> <i>must</i> see a(n) {{c1::<b>RNA primer</b>}} to bind, which is <b>complementary</b> and <b>antiparallel</b> to the polymerase</div></div></div>
“Technically it doesn’t need to be an <u>RNA</u> primer, just any primer with a 3’-OH group (i.e. PCR)<div><img></img></div>”
“<div><div><div><b>DNA polymerase </b>pauses and checks (““<b>proof-reads</b>””) via {{c1::3’ -> 5’ exonuclease}} activity</div><div></div></div></div>”
“<img></img>”
<div>Which enzymes are responsible for <b>removing the RNA primer</b> in <i><u>eukaryotes</u></i>? </div>
<div><br></br></div>
<div>{{c1::RNase H and FEN-1::2}}</div>
“<div>*<i>note: this is probably pretty low yield for step 1</i></div><div><br></br></div><div>Removal of primers</div><div>Prokaryotes: RNase H and DNA polymerase I (5’→3’ exonuclease activity)</div><div>Eukaryotes: RNase H and FEN-1 (flap endonuclease-1)</div><div><br></br></div><div>Gaps between fragments are filled after primer removal</div><div>Prokaryotes : DNA polymerase I</div><div>Eukaryotes : Polymerase δ</div><div><img></img></div>”
<div>Which enzyme catalyzes the formation of a phosphodiester bond between <b>Okazaki</b> <b>fragments</b>?</div>
<div><br></br></div>
<div>{{c1::DNA ligase}}</div>
“<div><i>this is the <b>lagging strand</b> and is synthesized in the direction <u>away</u> from the replication fork</i> </div><div><img></img></div>”
“<div>The enzyme which adds {{c2::<u>TTAGGG</u>::sequence}} to 3’ ends of chromosomes to <b>avoid loss of genetic material</b> with every duplication is known as {{c1::<b>Telomerase</b>}}</div>”
<i>- eukaryotes only; prokaryotes have circular DNA</i> <div><br></br></div><div>- critically shortening in telomere length –> signal for programmed cell death (TP53 becomes activated –> apoptosis)</div>
<div><div>Which replication enzyme is a <b>RNA-dependent</b> <b>DNA</b> <b>polymerase</b>, and thus a major example of reverse transcriptase activity, in humans? </div><div><br></br></div><div>{{c1::Telomerase}} </div></div>
- endogenously expressed in cells that need to divide regularly(ex. <b>germ cells, </b>certain adult <b>stem cells</b>), allowing them to proliferate indefinitely in a controlled manner
<div><div><div>Telomerase is a rare example where <b>{{c1::reverse transcriptase::enzyme}}</b> activity occurs <i>endogenously</i> in humans </div></div></div>
This is found in <b>eukaryotes only</b>
<div><div><div>What pathology is associated with <u>increased</u> telomerase activity?</div><div><br></br></div><div>{{c1::Cancer}}</div></div></div>
> 90% of cancer cells contain increased telomerase activity, allowing for continued proliferation without apoptosis
“<div><div><div><div><b>{{c1::RNA}} polymerase</b> <u>doesn't have to</u> see a <b>RNA primer</b> to bind</div><div></div></div></div></div>”
“binds to promoter regions and requires transcription factors<div><img></img></div>”
<div>Which type of <b>DNA</b> <b>mutation</b> causes the <u>least</u> severe damage? </div>
<div><br></br></div>
<div>{{c1::Silent mutations}}</div>
<i>silent «_space;missense < nonsense < frameshift</i>
<div><div>Which type of <b>DNA</b> <b>mutation</b> causes the <u>most</u> severe damage? </div><div><br></br></div><div>{{c1::frameshift mutations}}</div></div>
<i>silent «_space;missense < nonsense < frameshift</i>
<div>A(n)<b>{{c1::silent}} mutation</b> occurs when a nucleotide substitution codes for the <u>same</u> amino acid</div>
“<div><i>often a base change in 3rd position of codon (tRNA wobble)</i></div><div><i><img></img></i></div>”
<div>A(n)<b>{{c1::missense}} mutation</b> occurs when a nucleotide substitution codes for a <u>different</u> amino acid</div>
“<div><i>e.g. sickle cell disease (substitution of glutamic acid with valine)</i></div><div><i><img></img></i></div>”
<div>A(n)<b>{{c1::nonsense}} mutation</b> occurs when a nucleotide substitution codes for a <b>stop</b> codon</div>
“<div><i>usually results in a nonfunctional protein</i></div><div><img></img> </div>”
<div>A(n)<b>{{c1::frameshift}} mutation</b> occurs when there is a <u>deletion</u> or <u>insertion</u> of a number of nucleotides <b>not divisible by {{c2::3}}</b>, resulting in misreading of all nucleotides downstream</div>
“<div><i>protein may be shorter or longer, and its function may be disrupted or altered; examples include </i><b>duchenne muscular dystrophy</b><i> and </i><b>Tay-sachs disease</b> </div><div><br></br></div><div><img></img></div><div><br></br></div><div><img></img></div>”
<div><div>A mutation at a(n) {{c1::splice site}} results in a <b>retained intron</b> in the mRNA, leading to a protein with impaired or altered function</div></div>
“<i>rare cause of cancers, dementia, epilepsy, and some types of </i><b>β-thalassemia</b> “
<div><div>The enzyme that <u>recognizes</u> and <u>excises</u> <b>pyrimidine dimer</b> mutations is {{c1::excision endonuclease}}</div></div>
<i>nucleotide excision repair</i>
<div><div>What phase of the cell cycle do <b><u>nucleotide</u> excision repairs</b> occur?</div><div><br></br></div><div>{{c1::G1}}</div></div>
“In contrast, BER occurs in all phases of the cell cycle and Mismatch Repair occurs predominantly in S<br></br><div><br></br></div><div><img></img></div>”
<b>Xeroderma Pigmentosum</b> is an inherited pathology due to a defective {{c1::Nucleotide Excision Repair}} pathway
“<div><div><i>- This is inherited in an <b>autosomal recessive </b>manner </i></div><div><i><br></br></i></div><div><i>- can diagnose by measurement of repair mechanisms in WBCs</i></div></div><div><i><br></br></i></div><div><i><img></img></i></div>”
<div><div><div>What form of <b>DNA repair</b> fixes mutations due to DNA replication errors?</div><div><br></br></div><div>{{c1::Mismatch repair}}</div></div></div>
very important for maintaining <b>microsatellite stability</b> (DNA slippage can occur easily at these sites). Problems with this can lead to <u>colon cancer</u>
<div><div><u>Recognition</u> and <u>facilitation of excision</u> of <b>{{c2::mismatched nucleotides}}</b> occur via enzymes found on <b>two</b> genes: {{c1::<b>MSH2 (MutS)</b>}} or {{c1::<b>MLH1 (MutL)</b>}} </div></div>
<i>- <b>MutS</b> recognizes the mismatch on the newly created daughter strand (distinguished from parent strand by occasional nicks in the daughter strand phosphodiester bonds), <b>MutL</b> is then recruited and the complex slides along the DNA until 1 of daughter strand nicks is encountered</i><div><i><br></br></i></div><div><i>- <b>exonuclease 1 </b>is then loaded onto the repair complex and activated, which then excises the mismatch<br></br></i><div><i><br></br></i></div><div><i>Mutations in these genes account for 90% of cases of Lynch syndrome</i></div></div>
<div><div>What pathology is characterized by a deficiency of the <u>enzymes</u> used in <b>mismatch base repair</b>? </div><div><br></br></div><div>{{c1::Lynch syndrome (hereditary nonpolyposis colorectal cancer [HNPCC])}}</div></div>
leads to colon cancer with <b>microsatellite instability</b> (DNA slippage can occur easily at these sites). Problems with this can lead to <u>colon cancer</u>
<div><div>What phase of the cell cycle do <b>mismatch base repairs</b> <u>predominantly</u> occur?</div><div><br></br></div><div>{{c1::S}}</div></div>
”- <b>some also occur in G2</b>; whereas NER occurs in G1 and BER occurs throughout cell cycle<div><br></br></div><div><img></img></div>”
<div><div><div>What form of <b>DNA repair</b> fixes mutations due to spontaneous/toxic deamination?</div><div><br></br></div><div>{{c1::Base excision repair}}</div></div></div>
i.e. deamination, oxidation, etc
<div><div>In <b>base excision repair</b>, base-specific {{c1::glycosylases}} <u>remove</u> the altered base and create a(n) {{c2::AP (apurinic/apyrimidinic)}} site </div></div>
“<i>ex. cytosine deamination is repaired with uracil glycosylase</i><div><div><i><img></img></i></div><div><i><br></br></i></div><div><i><img></img></i></div></div>”
“<div><div>Which <b>base excision repair </b>enzyme is responsible for <u>removing nucleotides</u> at the <b>5’ end</b>?</div><div><br></br></div><div>{{c1::AP-endonuclease}} </div></div>”
“<img></img><div><img></img></div>”
“<div><div><div>Which <b>base excision repair </b>enzyme is responsible for <u>removing nucleotides</u> at the <b>3’ end</b>?</div><div><br></br></div><div>{{c1::Lyase}} </div></div></div>”
“<img></img><div><img></img></div>”
<div><div>What phase of the cell cycle do <b><u>base</u> excision repairs</b> occur?</div><div><br></br></div><div>{{c1::Throughout the cell cycle}}</div></div>
“Whereas NER occurs in G1, and mismatch occurs predominantly in S<br></br><div><br></br></div><div><img></img></div>”
<div><div>Which forms of <b>DNA repair</b> repairs double-stranded breaks (due to <u>ionizing radiation)</u>?</div><div><br></br></div><div>{{c1::Nonhomologous end joining}} and {{c2::homologous recombination}}</div></div>
“<div><i>Nonhomologous End Joining depicted below</i></div><div><i><br></br></i></div><div><i><img></img></i></div><div><i>Homologous Recombination depicted below</i></div><div><i><img></img></i></div>”
<div>Mechanisms to repair {{c1::dsDNA}} breaks are defective in Ataxia telangiectasia, Fanconi anemia, and SCID</div>
<i>- Due to defects in the ATM protein, FANC enzymes, and Artemis enzyme respectively</i>
<div>The {{c1::template}} strand is the dsDNA strand used for transcription; it is <b>complementary</b> and <b>antiparallel</b> to mRNA</div>
“<img></img>”
<div>The {{c1::coding}} strand is the strand of dsDNA that is <u>NOT</u> used during transcription, but is <b>identical to mRNA</b> (substitute T/U)</div>
“<img></img>”
<div><div><u>Practice</u>: If a DNA template sequence is TAGC, what is the mRNA sequence?</div><div><br></br></div><div>{{c1::GCUA}}</div></div>
“<i>AUCG is wrong because the strand is <u>built</u> in the 5’ to 3’ direction</i> “
<div>The {{c1::untranslated region (UTR)}} of m<b>RNA </b>is the portion of mRNA which contains no protein information</div>
“<div><div><i>every RNA contains a <b>5’ </b>and <b>3’ UTR</b></i></div></div><div><i><img></img></i></div>”
“<div><div>In <i>eukaryotes</i>, each gene has it’s <i>own</i> {{c1::promoter}}, to which RNA polymerase II may bind </div></div>”
<i>in prokaryotes, there may be one promoter for many genes (<u>operons</u>)</i>
<div>The <b>promoter</b> is an AT-rich upstream sequence with {{c1::TATA}} and {{c1::CAAT}} boxes </div>
“<div>- TATA (Hogness) is located approximately 25 bases upstream, CAAT is located 70-80 bases upstream</div><div><br></br></div><div>- these regions of weak A:T bonds are where RNA polymerase binds (easy to open up vs stronger G:C bonds)</div><div><br></br></div><div><img></img></div>”
<div><div><b>Promoters</b> serve as binding sites for {{c1::general::general/specific}} transcription factors</div></div>
“<div><i>they are present in <u>all cells with a nucleus</u> and are involved in basal transcription</i></div><div><br></br></div><div><img></img></div>”
<div><div>{{c1::Enhancers}}<b> </b>are stretches of DNA that <b>increase</b> <b>gene</b> <b>expression</b> by binding <i>specific </i>transcription factors</div></div>
“These bind regulatory activator proteins which stabilize RNA polymerase<div><br></br></div><div><img></img></div>”
<div><div>{{c1::Silencers}} are sites where <b>negative</b> <b>regulators</b> (repressors) bind to DNA</div></div>
<div>These <b>decrease</b> expression of a gene on the same chromosome by preventing RNA polymerase from binding</div>
<div><div><b>Enhancers</b> increase transcription via enhanced activity of the enzyme {{c1::RNA polymerase II}}</div></div>
”- enhancers bind regulatory Activator proteins that stabilize transcription factors / RNA pol<div><br></br></div><div><img></img></div>”
<div><div><b>Enhancers</b> serve as binding sites for {{c1::specific::specific/general}} transcription factors</div><div></div></div>
“<img></img>”
<div><div>Are <b>enhancers</b>/<b>silencers</b> <i>close</i> or <i>far</i> from the gene it regulates?</div><div><br></br></div><div>{{c1::May be close to, far from, or within the gene (in an intron)}}</div></div>
“<div>- Because of DNA coiling, many are geometrically close but many nucleotides away from gene</div><div><br></br></div><div>- enhancer sequences can also bind activator proteins that facilitate bending of DNA</div><div><br></br></div><div><img></img></div>”
<div><div><div>How can <b>enhancers</b> be far away from the gene it regulates?</div><div><u><br></br></u></div><div>{{c1::DNA will bend to bring enhancer to promoter}} </div></div></div>
“<img></img>”
<div>RNA polymerase {{c1::I}} makes {{c2::r}}RNA </div>
“<i>rRNA is the <u>most numerous</u> RNA; this is restricted to the <b>Nucleolus </b>and thus in Cancer, malignant cells with high mitotic activity have a large # of active rRNA and <b>prominent nucleoli</b></i><div><br></br><div><img></img></div></div>”
<div>RNA polymerase {{c1::II}} makes {{c2::m}}RNA </div>
“<i>mRNA is the <u>largest</u> RNA; this enzyme is inhibited by the <b>amanita phalloides (death cap mushroom) amatoxin</b></i><div><b><i><br></br></i></b><div> <img></img></div></div>”
<div>RNA polymerase {{c1::III}} makes {{c2::t}}RNA and 5S rRNA </div>
<div></div>
“<i>tRNA is the <u>smallest</u> RNA</i><div><img></img></div>”
<div>In <i>eukaryotes</i>, <b>{{c2::RNA polymerase II}}</b> may be <u>inhibited</u> by {{c1::<b>α-amanitin</b>}}</div>
<i><div></div></i><i>- absorbed into GI tract, amatoxins are transported to liver by portal circulation whereby active transport by organic anion transporting polypeptide (OATP) and sodium taurocholate cotransporter (NTCP) concentrate toxin within liver cells</i><div><i><br></br></i></div>- found in Amanita phalloides (<b>death cap mushrooms</b>); causes severe <u>hepatotoxicity</u> if ingested (6-24 hours post ingestion, abdominal pain, vomiting, and cholera like diarrhea)
<div>What drug is an <u>inhibitor</u> of <i>prokaryotic</i> <b>RNA polymerase</b>? </div>
<div><br></br></div>
<div>{{c1::Rifampin}}</div>
<i>therefore, rifampin blocks prokaryotic transcription</i>
“<div><div><div>One <i>co-transcriptional modification</i> is the addition of a(n)<b>{{c1::7-methylguanosine cap}}</b> at the <b>{{c2::5}}’ end</b> </div></div></div>”
“<img></img><div>- occurs in 2 stages, adding GTP, then methylation</div><div><br></br></div><div>- capping occurs in the nucleus as RNA is being transcribed; functions as protection against cellular degradation / allow escape from nucleus</div>”
“<div><div><div>One <i>post-transcriptional modification</i> is the addition of a(n)<b>{{c1::poly-A tail}}</b> at the <b>3’ end</b> </div></div></div>”
“<div><i>- synthesized by poly-A polymerase in the nucleus</i></div><div><i><br></br></i></div><div><i>- <b>protects mRNA from degradation within the cytoplasm</b> after it exits the nucleus</i> </div><img></img>”
<div><div><div>What sequence of bases represents a <b>polyadenylation signal</b>?</div><div><br></br></div><div>{{c1::AAUAAA::6}}</div></div></div>
telomeres are TTAGGG
<div><div><div>mRNA <b>quality control</b> occurs at {{c1::cytoplasmic processing bodies (P-bodies)}}, which contain exonucleases, decapping enzymes, and microRNAs</div></div></div>
- these are involved in regulation and turnover of mRNA; particularly in translation repression and mRNA decay<div><br></br></div><div>- additionally, certain constituents are involved in microRNA induced mRNA silence</div>
<div><div><div>mRNAs may be <b>stored</b> in {{c1::P-bodies}} for future translation</div></div></div>
- typically mRNA once entering cytosol associates with ribosomes, certain mRNA associated with proteins found in P bodies<div><br></br></div><div>- P bodies can partake in mRNA quality control, but also act to store mRNA to later release for further translation</div>
<div><div><div><div><div>In the <i>first</i> step of <b>alternative</b> <b>splicing</b>, the primary transcript (hnRNA) combines with {{c1::<b>small nuclear ribonucleoproteins</b> (snRNPS)}} and other proteins to form the <b>{{c2::spliceosome}}</b> </div></div></div></div></div>
“<div><i><b>Anti-snRNP antibodies are known as anti-Smith antibodies (SLE)</b></i></div><br></br><div><img></img></div>”
<div><div><div><div><div>After the <b>spliceosome</b> has been formed in <u>alternative splicing</u>, a(n) {{c1::lariat-shaped (looped)}} intermediate is generated</div></div></div></div></div>
“<img></img>”
<div><div><div><div><div>In the <i>final</i> step of <b>alternative splicing</b>, the {{c2::lariat}} is released to precisely remove the {{c1::intron}} and join <u>two</u> {{c1::exons}}</div></div></div></div></div>
“<img></img><div>Spliceosomes remove introns containing <b>GU </b>at the 5’ splice site and <b>AG</b> at the 3’ splice site</div><div><br></br></div>”
<div><div><div><div><div>Antibodies to <b>spliceosomal snRNPs</b>, also known as <b>{{c2::anti-Smith}} antibodies</b>, are highly specific for {{c1::<b>SLE</b>}}</div></div></div></div></div>
Lupus
<div><div><div><div>Different <i>exons</i> are frequently combined by {{c1::alternative splicing}} to produce a larger number of <u>unique</u> proteins </div></div></div></div>
“<div><i>allows for </i><b>multiple</b><i>, </i><b>different</b><i> </i><b>proteins</b><i> to be generated from a </i><b>single</b><i> </i><b>gene</b> </div><div><img></img></div>”
<div><div><div><div><div>One <u>hematological pathology</u> that is due to <b>abnormal splicing variants</b> is {{c1::β-thalassemia}}</div></div></div></div></div>
“<i>mutation in 5’ splice donor site of intron 1, therefore intron 1 is not removed</i><div><i><br></br></i></div><div><i>others include; Gaucher disease, Tay-Sachs Disease, Marfan syndrome</i></div>”
<div><div>{{c1::microRNAs}} are small, <i>noncoding</i> <b>RNA</b> <b>molecules</b> that <i>post-transcriptionally</i> regulate <b>protein</b> expression</div></div>
“<i><b>introns</b> can contain microRNA (miRNA) genes</i><div><div><img></img></div></div>”
<div><b>microRNA</b> often leads to the {{c1::silencing/inactivation}} of <i>target</i> <i>mRNA</i>, thus causing {{c1::<u>decreased</u>}} translation into protein</div>
<div><i>can have multiple mRNA targets, typically</i></div>
<div><i>related to complementary base pairing</i> </div>
<div><div>{{c1::tRNAs}} are the <i>smallest</i> RNAs and have a <u>clover-leaf structure</u> </div></div>
“<img></img>”
<div><div>At the <u>base</u> of a <b>tRNA molecule</b> is a(n)<b>{{c1::anti-codon loop}}</b>, which base pairs with a codon of mRNA in a <i>complementary</i>, <i>antiparallel</i> fashion</div></div>
“<img></img>”
“<div>At the <b>{{c2::3}}’ end</b> of a <b>tRNA molecule</b> is a(n)<b>{{c1::5’-CCA-3’}} sequence</b>, which<i> </i>is the amino acid <i>acceptor stem</i></div>”
“<div><i>CCA = <b>C</b>an <b>C</b>arry <b>A</b>mino acids</i> </div><div><br></br></div><div>The -OH of A links to the amino acid</div><div><br></br></div><div><img></img></div>”
<div><div>The <b>{{c1::T-arm}}</b> of <b>tRNA</b> contains the <u><b>TΨC</b> </u><u><b>sequence</b></u> (<b>ribothymidine</b>, <b>pseudouridine</b>, <b>cytidine</b>) necessary for tRNA-ribosome binding</div></div>
“<img></img>”
<div><div>What is the function of the <b>T-arm</b> of <b>tRNA</b>? </div><div><br></br></div><div>{{c1::tRNA-ribosome binding}}</div></div>
“<img></img>”
<div><div>The <b>{{c1::D-arm}}</b> of <b>tRNA</b> contains <u>dihydrouridine</u> residues necessary for tRNA recognition by the correct aminoacyl-tRNA synthetase</div></div>
“<img></img>”
<div><div><div><b>Aminoacyl-tRNA synthetase</b> requires {{c1::ATP}} and releases inorganic PPi</div></div></div>
“<div><i>scrutinizes an amino acid before and after it binds to tRNA; if incorrect, bond is hydrolyzed</i></div><div><img></img></div>”
“<div><div>Accurate base pairing is usually required only in the first <b>two</b> nucleotide positions of a <u>mRNA codon</u> because codons differing in the <b>3rd</b> “”{{c1::wobble}}”” position may code for the same amino acid</div></div>”
“<img></img>”
<div><b>Peptide bond formation</b> is facilitated by the <b>ribozyme</b> <i>{{c1::peptidyl transferase}}</i></div>
“<div><i>a <b>ribozyme </b>is RNA carrying out a catalytic reaction (enzyme is a protein)</i></div><div><img></img></div>”
<div><div><div>What is the <u>smaller</u> <b>ribosomal subunit</b> used in <i>prokaryotic</i> translation? </div><div><br></br></div><div>{{c1::30s}}</div></div></div>
<i>this subunit recognizes the shine dalgarno sequence</i>
<div><div><div>What is the <u>total</u> size of the <b>ribosome</b> used in <i>prokaryotic </i>translation?</div><div><br></br></div><div>{{c1::70s}}</div></div></div>
“<img></img>”
<div><div><div>What is the <u>smaller</u> <b>ribosomal subunit</b> used in <i>eukaryotic</i> translation? </div><div><br></br></div><div>{{c1::40s}}</div></div></div>
“<i>this subunit recognizes the 5’-7-Methyl-G-cap</i> “
<div><div><div><div>What is the <u>larger</u> <b>ribosomal subunit</b> used in <i>eukaryotic</i> translation? </div><div><br></br></div><div>{{c1::60s}}</div></div></div></div>
“<i>this is the target of </i><b>shiga</b><i> </i><b>toxins</b><i> and </i><i>verotoxin</i> “
<div><div><div><div>What is the <u>total</u> size of the <b>ribosome</b> used in <i>eukaryotic </i>translation?</div><div><br></br></div><div>{{c1::80s}}</div></div></div></div>
“<img></img>”
<div><div><i>Eukaryotic</i> {{c1::Initiation Factors}} help <u>assemble</u> the <b>40s</b> <b>ribosomal subunit</b> with the initiator tRNA</div></div>
“<i><div></div></i><i>- IF’s identify either the 5’ cap or an internal ribosome entry site (IRES - often located in 5’-UTR); Uses GTP to assemble the structure</i><div><br></br></div>- initiation factors are released when the mRNA and the ribosomal 60S subunit assemble with the complex <div><br></br></div><div><br></br></div><div><img></img></div><div><img></img></div>”
<div><div><b>Translation</b> is initiated by {{c1::GTP}} hydrolysis </div></div>
“<img></img>”
<div><div>At what <u>site</u> of the <i>ribosome</i> does tRNA bind to for translation <b>initiation</b>? </div><div><br></br></div><div>{{c1::P site}}</div></div>
”"”prepare”” site- the ““peptidyl”” site<div><img></img></div>”
<div><div>In the <u>first</u> step of strand <b>elongation</b>, a(n) {{c1::aminoacyl-tRNA}} binds to the <b>A</b> site </div></div>
“<img></img>”
<div><div>After aminoacyl-tRNA binds to the A site of the ribosome, {{c1::peptidyl transferase}}, a <b>ribozyme</b>, catalyzes peptide bond formation (translation)</div></div>
“<img></img>”
“<div><div>In the final step of translation <b>elongation</b>, {{c1::translocation}} of the ribosome occurs, advancing the ribosome 3 nucleotides towards the 3’ end of mRNA</div></div>”
“<div><i>requires GTP and elongation factors</i></div><div><i><br></br></i></div><img></img>”
<div><div>In addition to GTP, <b>translocation</b> of the ribosome during <i>translation</i> also requires eukaryotic {{c1::elongation factor 2 (eEF-2)}}</div></div>
“<div><i>- pseudomonas exotoxin A and diphtheria toxin act via inhibition of eukaryotic enlongation factor 2 </i><i>via <b>ADP ribosylation</b></i></div><div><br></br></div><div>- translocation occurs when Ribosome advances 3 nucleotides towards 3’ end, moving the peptidyl tRNA to the P site (A site is now empty)</div><div><img></img></div><div><br></br></div><div><img></img></div>”
<div><div>In the <i>final</i> step of <b>translation</b>, a stop codon is recognized by {{c1::release factor}} and the completed polypeptide is released from the ribosome</div><div><div><div></div></div></div></div>
“<img></img>”
<div>A(n)<b>{{c1::chaperone}} protein</b>, is an intracellular protein involved in facilitating and/or maintaining <b>protein</b> <b>{{c2::folding}}</b> </div>
<i>in yeast, <b>heat shock proteins (e.g. Hsp60)</b> are expressed at high temperatures to prevent protein denaturing/misfolding</i>
<div><div><div><div><div>What is the <u>shortest</u> phase of the <b>cell cycle</b>?</div><div><br></br></div><div>{{c1::M phase (mitosis + cytokinesis)}}</div></div></div></div></div>
“<img></img>”
<div><div><div><div><div>Which <b>cell cycle phase</b> is characterized by resting, non-dividing cells?</div><div><br></br></div><div>{{c1::G0}} </div></div></div></div></div>
“<img></img>”
<div><div><div><div><div>What <u>cell type</u> remains in G0 and can only regenerate from stem cells?</div><div><br></br></div><div>{{c1::Permanent}}</div></div></div></div></div>
<i>examples include neurons, skeletal/cardiac muscle, and RBCs</i>
<div><div><div><div><div><div>What <u>cell type</u> enters G1 from G0 when stimulated?</div><div><br></br></div><div>{{c1::Stable (quiescent)}}</div></div></div></div></div></div>
<i>examples include hepatocytes, lymphocytes, renal tubular cells, periosteal cells</i>
<div><div><div><div><div><div>What <u>cell type</u> <i>never</i> enters G0 and divides rapidly with a short G1?</div><div><br></br></div><div>{{c1::Labile}}</div><div></div></div></div></div></div></div>
<i>examples include bone marrow, gut epithelium, skin, hair follicles, and germ cells</i>
<div><div><div><div><div><div>Which <b>cell cycle phase</b> is characterized by DNA synthesis and replication?</div><div><br></br></div><div>{{c1::S}} </div></div></div></div></div></div>
<i><u>46</u> chromosomes/chromosomes per cell before S phase; <u>92</u> <b>chromatids </b>per cell after S phase (still 46 chromosomes)</i>
<div><div><div><div><div>Which <b>cell cycle phase(s)</b> are part of <b>interphase</b>? </div><div><br></br></div><div>{{c1::G1, S, G2}}</div></div></div></div></div>
“<div>- G1 - cells in this phase prepare building blocks for DNA synthesis (synthesis of RNA, protein, lipid, and carbs)</div><div><br></br></div><div>- S - DNA replication occurs during this phase</div><div><br></br></div><div>- G2 - DNA is checked for errors and corrections are made if possible, if corrections cannot be made, then apoptosis will result; ATP synthesis occurs here</div><div><br></br></div><div><img></img></div>”
<div><div><div><div><div><div>Which <b>cell cycle phase(s)</b> are <u>NOT</u> part of <b>interphase</b>? </div><div><br></br></div><div>{{c1::M}}</div></div></div></div></div></div>
“<img></img>”
<div>{{c1::<b>Free</b>}} <b>ribosomes</b> are unattached to any membrane and are the site of <u>synthesis</u> for <b>cytosolic</b> and <b>organellar </b><b>proteins</b></div>
“<img></img>”
<div>What part of the cell is the site of <b>steroid synthesis</b> and <b>detoxification </b>of drugs and poisons?</div>
<div><br></br></div>
<div>{{c1::Smooth endoplasmic reticulum}}</div>
<i>liver hepatocytes and steroid hormone-producing cells of the adrenal cortex and gonads are rich in SER</i>
<div>When proteins are <b>misfolded</b>, multiple {{c1::ubiquitins}} are added, which aids in trafficking to the <i>proteasome</i></div>
“<img></img>”
<div>The {{c1::proteasome}} is a barrel-shaped protein complex that degrades damaged or <b>ubiquitin-tagged</b> proteins</div>
“<img></img>”
<u>Defects</u> in the <b>ubiquitin-proteasome system </b>have been implicated in some cases of {{c1::Parkinson}} disease
<i>defects in the <b>Parkin</b>, <b>PINK1</b>, and <b>DJ-1</b> genes specifically</i>
<div><div>On the <b>N terminal side</b> of <i>newly synthesized protein</i>, a stretch of 10-15 <b>hydrophobic</b> <b>amino acids</b> forms the {{c1::<b>N-terminal signa</b>l}} <b>sequence</b></div></div>
“<img></img>”
<div><div>The <b>N-terminal signal</b> <b>sequence</b> of a newly synthesized protein is bound by a(n) {{c1::<b>signal recognition particle (SRP</b>)}}, which attaches the complex to the {{c2::ER}} membrane </div></div>
“<div><i>once the <u>SRP-protein complex</u> is bound to the ER, the signal sequence is removed and the protein enters the ER (co-translational)</i> </div><div><img></img></div>”
<div><div>Which enzyme <b>phosphorylates</b> <b>mannose</b> in the <u>Golgi apparatus</u>, facilitating protein trafficking? </div><div><br></br></div><div>{{c1::Phosphotransferase}}</div></div>
<i>specifically, N-acetylglucosaminyl-1-phosphotransferase</i>