Arthroplasty Flashcards
Options for this young (<50yo) patient with a painful right knee
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/605/q_image_thumb.jpg?1426781598)
- Exhaust concervative treatment
- PT, NSAIDS
- off loading brace
- Cortisone injections
-
Valgus producing tibial ostotomy
-
Contraindications
- Inflammatory arthritis
- Less than 90 deg flexion
- Flexion contracture > 10 deg
- Ligament instability (varus thrust)
- Lateral tibial subluxation > 1cm
- Medial compartment bone loss
- Lateral compartment joint space narrowing
-
Predictors of failure
- Smoking
- > 60
- Varus > 10
- Other arthritides
-
Contraindications
-
Closing wedge problems
- Patella baja
- Loss of posterior slope
-
Opening wedge
- Nonunion
- Loss of valgus correction
Contraindications to HTO
Inflammatory arthritis
Less than 90 deg flexion
Flexion contracture > 10 deg
Ligament instability (varus thrust)
Lateral tibial subluxation > 1cm
Medial compartment bone loss
Lateral compartment joint space narrowing
Predictors of failure of HTO
Smoking
> 60
Varus > 10
Other arthritides
Options for this 65yo male with painful right knee?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/609/q_image_thumb.jpg?1426781926)
-
Exhuast non-operative
- PT, NSAIDS
- cortisone injection
- offloading brace
- Cane, mobility aids
- UKA vs HTO vs TKA
-
UKA benefit over HTO and TKA
- Smaller incision
- Better knee function
- Shorter stay with less pain
-
Technique
- Do not overcorrect - can cause early failure
- Varus - correct to 1-5 deg of valgus
-
Contraindications
- ACL deficiency (strongest)
- fixed varus or valgus deformity > 10 degrees
- restricted motion
- < 90° of flexion
- fixed flexion contracture of > 10°
- joint subluxation of 5 mm or greater
- arthrosis of the additional compartment
- modest Outerbridge Stage II chondromalcia of patella is acceptable
- non-osteoarthritis arthritis
- younger high activity patients and heavy laborers
- overweight patients (> 90 kg)
-
Selection criteria
- Pain must be localized to the compartment being replaced
- Anterior knee pain means patellofemoral disease
- Global pain means tricompartmental disease
-
Complications
- Stress fractures
- best visualized on bone scan
- Usually on the tibial side
- Tibial component collapse
- poor mechanical properties of the bone
- Failure
- Overcorreciton
- Stress fractures
- Undercorrection
- Fixed-bearing (loosening)
- Mobile bearing (diseae progression)
- Patellar impingment (requires revision to TKA)
-
Normal alignment of the knee
Lateral proximal femoral angle: 90 degrees
Mechanical Lateral distal femoral angle: 88 degrees
Anatomic Lateral distal femoral angle: 81 degrees
Medial proximal tibial angle: 87 degrees
Lateral distal tibial angle: 89 degrees
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/611/a_image_thumb.png?1452985898)
What is this depicting and what are your considerations when measuring the deformity?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/612/q_image_thumb.png?1426785912)
CORA - center of rotation of angulation
- Draw a line threw the axis of the distal and proximal end
- If there is only angulation - will occur at the apex of deformity
- If there is combined translation - will occur at a distance equal to the amount of translation deformity
- If angulation is seen on both AP and lateral, the true angulation will be larger than that seen on either XR
- When you don’t see angulation in one plane, but you do on the other - this is the true angular deformity
What is your appraoch to this patient?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/614/q_image_thumb.jpg?1426786085)
-
History
- Take a complete and ample history
- Pain, functional issues, issues in other joints
- Previous surgeries, trauma
- PMHx, meds, all
-
Physical
- Look
- Gait, measure alignment and deformity
- Feel
- Assess stability of the hip, knee, ankle/foot
- Move
- ROM, contractures
- Full NV exam
- Look
-
Imaging
- Radiographs - full length standing AP/Lat
-
Indications for surgery
- Ligamentous laxity on the concave side
- LLD > 2cm
- Uniconylar OA of the knee
- Inability to place the foot in a plantigrade position
-
Conservative
- Unloading brace
- Shoe lift/orthoses
- Appropriate analgesia
-
Considerations
- Healing potential
- Should be done in an area with better healing potential
- Can accept some translation as long as the deformity is anticipated
- Leg length discrepancy - affected by both closing/opening and varus/valgus, the affect is combined
- Closing wedge can relatively lengthen ligaments and tendons
- Opening wedge with lengthen = half the base of the triangle
- Healing potential
- Varus correction will produce lengthening
- This will decrease as you go more distal
- Valgus produces shortening
Technical goals of TKA
- restore mechanical alignment (mechanical alignment of 0°)
- restore joint line ( allows proper function of preserved ligaments. e.g., pcl)
- balanced ligaments (correct flexion and extension gaps)
- maintain normal Q angle (ensures proper patellar femoral tacking)
You are planning a TKA for this patient. What are the order of releases
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/616/q_image_thumb.gif?1426786618)
- osteophytes
- deep MCL (usually osteophytes and deep MCL is sufficient release)
-
Posteromedial corner
- Semimembranosus
- capsule
-
superfical MCL
- can find as it blends into pes anserine complex
- can not completely release or will have valgus instability (requires constrained prosthesis). Therefore perform subperiosteal elevation only
- Differential release: performed with two component of superficial MCL
- posterior oblique portion is tight in extension (release if tight in extension)
- anterior portion is tight in flexion (release if tight in flexion)
- PCL
Order of release for a flexion contracture
- Order of posterior release
- osteophytes
- posterior capsule
- gastronemius muscles (medial and lateral)
- You do not want to address by removing too much tibia
- will change joint line and lead to patella alta
- Performed with the knee flexed so there is less risk to the popliteal artery
Important considerations for planning your TKA cuts
Femur
- uses intramedullary guide, if can’t get this then use CT guided (post DFVO, trauma etc)
-
Distal femur valgus cut (5-7° from AAF )
- jig measures 6 degrees from femoral guide (anatomic axis)
- will vary if people are very tall (VCA < 5°) or very short (VCA > 7°)
-
Posterior referencing with femoral cut
- 3 deg ER (normal DR is 3 deg IR)
- otherwise will internally rotate your component
- should be parallel to interchondylar axis
- be careful with hypoplasia of the lateral femoral condyle, you can put the prosthesis into IR with a posterior reference system
Tibia
- Cut should be perpendicular to mechanical axis
- Can use intramedullary, unless there is deformity then need to use extramedullary
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/618/a_image_thumb.jpg?1426787476)
This patient comes in with knee pain. What is the most common complications of TKA? How can you prevent it?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/619/q_image_thumb.jpg?1426787697)
- Abnormal patellar tracking, although not the most serious, is the most common complication of TKA.
- The most important variable in proper patellar tracking is preservation of a normal Q angle (11 +/- 7°)
- the Q angle is defined as angle between axis of extensor mechanism (ASIS to center of patella) and axis of patellar tendon(center of patella to tibial tuberosity)
- Any increase in the Q angle will lead to increased lateral subluxation forces on the patella relative to the trochlear groove, which can lead to pain and mechanical symptoms, accelerated wear, and even dislocation.
- Common errors include:
- internal rotation of the femoral prosthesis
- medialization of the femoral component
- internal rotation of the tibial prosthesis
- placing the patellar prosthesis lateral on the patella
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/619/a_image_thumb.gif?1426787723)
Where should the joint line be in TKA? What problems can you run into if you move it
-
Normal joint line
- 1 cm above fibula
- 2 fingerbreaths about tibial tuberosity
-
elevating the joint line (> 8mm leads to motion problems) and can lead to
- mid-flexion instability
- patellofemoral tracking problems
- an “equivalent” to patella baja
-
lowering joint line
- lack of full extension
- flexion instability
Saggital balancing. Go. All of it. You have 30 sec.
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/621/a_image_thumb.png?1426788063)
You are planning a TKA on this patient. What is your order of release. What are some important considerations?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/622/q_image_thumb.png?1426788221)
-
Classification
- Stage 1 - not correctable
- Stage 2 - > 10 deg, not correctable
- Stage 3 - severe deformity, possibly incompetent MCL, severe bone loss
-
Order of Release
- osteophytes
- lateral capsule
- iliotibial band if tight in extension (release if tight in extension)
- with Z-plasy or release off Gerdy’s tubercle
- popliteus if tight in flexion (release if tight in flexion
- for severe deformities release both the iliotibial band and the popliteus
- LCL
- some authors prefer to release this structure first if tight in both flexion and extension
- others prefer this should be the last structure to release, if you need to release it consider of constrained prosthesis
-
Considerations
- Coronal balancing - older patient can use CCK, younger patient want to take less bone, but still want to do a primary knee
- peroneal nerve palsy
You do a TKA on this patient and surprise! He gets a peronal nerve palsy. What are some risk factors? How do you treat?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/623/q_image_thumb.jpg?1426788562)
-
Prognosis
- most resovle in 3 months
-
Risk Factors
- use of epidural anesthesia;
- previous spinal surgery (double crush);
- valgus knee deformity
- flexion contracture more than 20 deg
- abarent retractors
- pre-op neuropathy
-
Immediate
- take of dressing
- flex the knee
- throrough documentation of physical exam
-
Post-op
- AFO
- PT for ROM
- EMG with-in one month
-
At 3 months
- Repeat EMG for improvement
- Decompression with neuroloysis
- 4 cm proximal
- adherence to fibular head
- 7-15 cm distal to fibular head
Amount of antibiotics to put in antibiotic cement
- Need to keep under 2g/40g of cement to preserve mechanical function
- Safe loading dose
- Vanco - 10.5g
- Gent - 12.5g (although some report lower - 2g)
- Masri recommends 3.6g tobra and 1g vanc per 40 mg
- Powder is poured into liquid cement, vacum is not used - keeps porosity high to help with elution of cement
What’s the most important factor in post-op TKA ROM?
Pre-op ROM
Pros and Cons of a CR knee
- Most common, relies on native PCL
- Bone conserving
- More consistent joint line preservation
- Proprioceptive feedback
- Disadvantages
- Loss of PCL will lead to instability and failure
- Tight PCL will cause tightness in flexion and cause lift-off of component
- Excessive resection will cause failure from repetitive subluxation
- Instability, pain, buckling
-
Harder to balance
- Avoid in varus > 10, valgus > 15
-
PCL Rupture
- Trauma
- Osteolysis
-
Paradoxical movement - due to loss of ACL
- Tibia slides forward under the femur instead of posteriorly
Modern implants move center of rotation more posterior
- Tibia slides forward under the femur instead of posteriorly
- Loss of PCL will lead to instability and failure
Pros and cons of anteriorly stabilized knee
- Anterior lip prevents femor from rolling forward
- PE is highly congruent, there is no cam
- Advantage
- Bone conserving
- Easier balancing
- Operative versatility
- Regulated kinematics
- Disadvantage
- Increased PE surface
- Minimal rollback
- Flexion gap laxity = instability and pain - requires treatment to assess this
Indications, pros and cons of a PS knee
- Outcomes are the same for PS and CR knee
-
Indications
- Previous patellectomy - weak extensor mechanism can lead to anterior dislocation
- Inflammatory arthritis - leads to PCL rupture
- varus >10
- valgus >15
-
Advantages
- Easier balancing
- No sliding
- better flexion
-
Disadvantages
-
Cam jump - if flexion gap is loose, knee will hyperextend, rotate and jump over post and dislocate
- Reduce with sedation, 90 deg of flexion and anterior drawer maneuver
- Avoid in knees with >130 flexion
- Ultimately needs to be revised to address loose flexion gap
- Overreleased poplitues with saw blade
- Overrelease anterior MCL
- Anterior translation femoral component
-
Patella Clunk
- Scar tissue superior to patella gets cause in box
- Flexion - Ex at 45 deg
- Treatment - arthroscopic or mini open debridement
-
PE Wear from tibial post
- Causes aseptic loosening
- If need if hyperextended will cause impingement anteriorly and increase wear rate
- Flexed femoral component, excess tibial slope, anterior translation
-
Additional bone removed
- For post
- Large flexion gap
- Due to PCL removable
- Need to take more distal femur to account for this
-
Cam jump - if flexion gap is loose, knee will hyperextend, rotate and jump over post and dislocate
- Beware joint line elevation with patella baja** Max 8mm
Indications for the use of this prosthesis?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/629/q_image_thumb.jpg?1426790650)
- LCL/MCL attenuation or deficiency
- Flexion gap laxity
- *Can be used more in revision TKA, but consider at times for primary
- ie; severe valgus knee
the patient depicted had instability following CR knee and PCL rupture
Indications for the following prosthesis
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/630/q_image_thumb.jpg?1426791105)
Constrained hinge with rotating platform
- Tibia rotates with-in yoke to allow rotation during gait
- Without rotation there was a high loosening rate
- Intramedullary stem for high rotational loads
-
Indications
- Global ligament deficiency
- Hyperextension instability (polio or tumor resection)
- Knee resection for tumor
- Complete MCL (controversial)
Why was this prosthesis choosen?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/631/q_image_thumb.jpg?1426791205)
Tumour Prosthesis
- tumour
- significant bone loss
You do this procedure on a healthy 65 yo male. What are all the complications?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/633/q_image_thumb.jpg?1426791367)
-
Femoral Notching
- Jig is placed too low on the femur
- Lowers load to failure (fracture)
- In bending the fracture extend from the notch creating an oblique fracture
- Peroneal Nerve Palsy
-
PCL deficiency (in a CR knee)
- Will become loose in flexion, knee will feel unstable and femur will start to slide forward
- Will get anterior knee pain
- Treat with revision to PC or CCK
- Lateral Retinacular Release
- Patella Fracture
-
Intra-operative MCL injury
- Primary repair with 6 weeks NWB with full ROM (if young)
- Recommended treatment is to covert to highly constrained prosthesis
- Arthrofibrosis
-
Post-op Flexion Contracture
- The most important factor of post-op range of motion is pre-op ROM
- In a well balanced knee the gastroc is the cause of the flexion contracture
-
Severe extra-articular femoral deformity
- Can do a combined osteotomy with TKA with long stem that goes past the osteotomy site
-
Osteolysis
- Usually around 8-10 years
- Gradual increase in effusion with mild warmth but no erythema
- Normal lab results and aspiration
- Most common place is the posterior femoral condyle
What is usually causing a flexion contracture post-op TKA
gastroc
When do you usually see osteolysis in TKA and where do you get it?
8-10 years
posterior femoral condyle
You do the following procedure. They come back at 6 weeks and a stiff knee. How do you approach this?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/636/q_image_thumb.jpg?1426791597)
-
Functional ROM
- 90 degrees needed to go down stairs
- 95 to get up from a chair
-
Factors to assess
- Boney resection
- patella baja/elevation of joint line
- tibial slope (not enought)
- posterior osteophytes
- patient factors
-
Radiography
- Assess joint line based on fibula and patella
- Assess alignment of implants
- presence of osteophytes
-
Treatment
- depends on the surgeon, some will take them back if not to 90 by 6 weeks, can be done up to a year
-
Manipulation
- usually at 6 weeks
- Later manipulation as high rate of fracture
-
Scope
- release adhesions, cement/loose bodies
- Arthrotomy
- poly exchange, patellar exchange, posterior release, tuberosity transfer, quads snip
- Not highly recommended, often fails with recurrent pain and stiffness
-
Revision TKA
- tibial tuberosity osteotomy, V-Y plasty
- address tibial slope, patellar height
TKA. Patient can no longer extend their knee. How do you approach this?
- Can also occur with lowering of the joint line
-
Overview
- patellar tendon rupture is a rare and devastating complication after TKA with an incidence reported ranging from 0.17% to 2.5%
- Quadriceps tendon rupture extremely rare ~1%.
- Higher risk with infection, multiple surgeries, hinged prosthesis
-
Patellar Fracture
- Thickness <12mm
- Lateral retinacular release (osteonecrosis)
- Due to transection of superior genicular artery
- Osteonecrosis
- Theoretical risk with removal of fat pad, lateral release, quads turndown
- Blood supply comes from the medial to lateral part of the knee
- Can also be caused by maltracking or direct trauma
-
Quads or patellar tendon rupture
- Overall very poor outcome
-
Treatment
- Can treat conservatively if the component is solid and there is no extensor lag
- Quads
- Drill holes if no patella resurfacing
- Suture anchors if there is less bone stalk
- Patellar
- Primary repair with drill holes or suture anchor does not do well
- Component revision if there is enough bone, component resection if not
- Allograft or autograft if there is significant extensor lag
- Fresh frozen is the prefered choice
- Use a detensioning wire (or mersiline tape) for 3 months
Considerations when deciding whether to resurface the patella
- High clinical variability in practice
-
Complications
- patellar fracture
- malailignment
-
Consequences
- Anterior knee pain with higher revision rate
- 50% re-operation rates and higher complication rates with no patellar resurfacing - at about 5 years outcomes become the same
- Earlier designs had a high failure rate, newer designs have longer survivorship
-
Technique
- Indicaitons to resurface
- maliagnmnet
- minimal wear
- inflammatory disease
- If you’re not resurfacing use a more anatomic design
- Patellar cut
- Use the caliper before and after
- Under resection leads to pain and a tight compartment
- Over resection leads to fracture - max thinness is 12mm
- Medial-superior placement is ideal
- Helps to restore Q angle with fewer tracking complications
- Lateral Release
- complications
- fracture
- component dislocation
- wear
- infection
- Indicaitons to resurface
Diagnosis? Causes? Treatment considerations in TKA?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/644/q_image_thumb.png?1426793135)
Patella Baja
-
Introduction
- A condition manifested by a shortened patellar tendon
- Leads to limited flexion due to patellar impingement on the tibia in extremes of flexion
-
Causes
- proximal tibial osteotomy
- tibial tubercle shift or transfer
- proximal tibia previous trauma
-
Presentation
- mechanical block to full flexion
-
Management
- Operative with TKA
-
lowering joint line
- distal femoral augmentation and cutting off more proximal tibia
- avoid bone cuts that raise the joint line (raising the joint line will effectively increase the patella baja deformity)
-
elevating patella
- use small patellar component and place superiorly
- trim bone or polyethylene to reduce impingement
-
lowering joint line
- one option in severe deformity is to cut the patella but not to resurface it (this will reduce patellar impingement allowing for more knee flexion)
- Operative with TKA
This patient comes into your clinic with a painful knee. What is your approach and general priniciples?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/647/q_image_thumb.jpg?1426793483)
RULE OUT INFECTION!!!!!!!!!
- take a complete history around the pain, duration, time pain free, instability, PMHx, smoking
- assess for knee stability, contractures, neurological issues, vascular issues
- previous inctions
- patellar tracking
- Get all previous OR notes
- ESR, CRP, possible aspiration
- Bone scan - fracture, infection
- Imaging - AP, lateral WB views, full length standing
- compare to previous, assess for further lysis
- assess opposite knee
- Look at lysis around each component
- component alignment, shift
- posterior sag tibia = PCL
- full alignment of knee
-
Goals of revison surgery
- extraction of components with minimal bone loss and destruction
- restoration of bone deficiencies
- restoration of joint line
- balance knee ligaments
- stable revision implants
- address patellar malalignment
- soft tissue coverage
-
Exposure
- Use most lateral incision with multiple incisions
- Try to leave skin bridge 6cm if you can’t use old incision
- Release all adhesions and scar tissue
- do not pull off the patellar tendon
- If the patella cannot be everted safely
-
Quads snip - snip across the quads
- No need to protect WB
- 45 deg angle to arthrotomy
-
Patellar turndown - V-Y
- Associated with weakness
- Protect WB with extension brace for 6 weeks
-
Tubercle ostotomy
- Less weakness but can’t do if there is patellar baha
- 2cm wide, 1cm thick, 6 cm long
- start 1cm medial to tubercle with an osillating saw
- finish laterally with an osteotome
- stemed revision must bipass osteotomy
- WBAT with ROMAT
-
Quads snip - snip across the quads
- Prothesis Extraction
- Do with as little damage as possible
- Contact rep for specific implant removal
- ostotomes, punchs, slap hammer, clamps, saw, burr
- Take poly out
- Free femur with saw and osteotome
- don’t lever
- remove with punch or slaphammer
- Similar technique with the tibia
- may need to cut the stem
- osteotomy for exposure
- Patella
- can leave, or cut the pegs off and then drill them out
- Clear cement, if you are re-cementing you can leave the cement
- Bone Loss
-
Cause
- __abrasion, infection, osetolysis, extraction
- load sharing to the diaphysis (stem)
- stem is cement often, unless you have such sever bone loss you need to go up to the diaphysis (not like a hip)
- cavity defect filling
- cement
- for cavitary defect is < 1 cm
- structural bone grafts
- includes metal augments, or modular endoprosthetic devices
- indicated for segmental defect > 1cm
- cement
-
Cause
- Appropriate implants
- Tibia first, establish joint line
- use contralateral films
- 2cm above fibular head
-
hinged
- no ligamentous support
- multiply revised
- hyperextension seen in polio
- tumor, infection
- charcot (relative)
-
CCK/stem (constrained condylar knee)
- MCL/LCL laxity
- flexion gap
- CR to PS or CCK
- Tibia first, establish joint line
- Soft tissue
- Medial gastroc is the most reliable
- Do not delay closure, should be done at the same time as revision
Complications associated with Revision TKA?
-
Pain
- pain scores less favorable than primary TKR
- activity related pain can be expected for 6 months
- Stiffness
-
Neurovascular problems
- peroneal nerve subject to injury with correction of valgus and flexion deformity
- Infection
-
Skin necrosis
- prior scars should be incorporated into skin incision whenever possible
- bloody supply to anterior knee is medially based, so lateral skin edge is more hypoxic
- if multiple previous incisions, use most lateral skin incision
- can use wound care, skin grafting, or muscle flap coverage (gastroc) for full thickness defects
-
Extensor mechanism disruption
- can use extensor mechanism allograft using achilles tendon
- Semi-T graft can be used to help augment
- Can use this intra-op if you loose the tendon
Indicaitons, contraindications and optimal position
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/649/q_image_thumb.jpeg?1426794598)
KNEE ARTHRODESIS
-
Indications
- painful ankylosis after infection or trauma
- neuropathic arthropathy
- tumor resection
- salvage for failed TKA (most common)
- loss of extensor mechanism
-
Contraindications
- absolute
- active infection
- relative
- bilateral knee arthrodesis
- contralateral leg amputation
- significant bone loss
- ipsilateral hip or ankle DJD
- absolute
-
Optimal Position
- 5-8° valgus
- 0-10° of external rotation (match other leg)
- 0-15° of flexion
- some limb shortening advantageous for patient self-care
Options for fixation for the following? Complications?
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/651/q_image_thumb.jpg?1426794699)
-
Fixation
-
Intramedullary rod fixation
- can be one long antegrade device or a two part device connected at the knee
- patella can be left alone or incorporated into arthrodesis
-
External fixation
- must allow compression of arthrodesis site
- done with unilateral external fixation, Ilizarov, or Taylor Spatial Frame
-
Plate fixation
- can be done alone in combination with intramedullary nailing
-
Intramedullary rod fixation
-
Complications
- Nonunion
- Infection
- Low back pain
- Ipsilateral hip degenerative changes
- Contralateral knee degenerative changes
- Fracture
- supracondylar femur or proximal tibial metaphysis fractures
Indications and contraindications; Advantages and disadvantages
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/652/q_image_thumb.jpg?1426975044)
-
Indications
- patients with advanced arthritis and good proximal femoral bone stock
- three types of patients for whom hip resurfacing is indicated (Amstutz, et al)
- patients with proximal femoral deformity making total hip arthroplasty difficult
- patients with high risk of sepsis due to prior infection or immunosuppression
- patients with a neuromuscular diagnosis
-
Contraindications
-
absolute
- bone stock deficiency of the femoral head or neck (e.g., cystic degeneration of the femoral head)
- >75% femoral head
- abnormal acetabular anatomy (small)
- Associated with acetabular loosening
- bone stock deficiency of the femoral head or neck (e.g., cystic degeneration of the femoral head)
-
relative
- coxa vara
- increased risk for neck fractures
- significant leg length discrepencies (resurfacing does not allow for leg length corrections)
- female gender (controversial)
-
absolute
-
Advantages
- preservation of femoral bone stock
- improved restoration of hip biomechanics with lower risk of limb length discrepancy
- lower dislocation rate
- rapid recovery
- revision is easier than an intremedullary THA
- better stability compared to standard small head (22- to 32-mm) THA
- ability to engage in high demand activities
-
Disadvantages
- lack of modularity with inability to adjust length or correct offset
- requires larger exposure than conventional THA
Outcomes of hip resurfacing
- variable outcome findings in the literature (79% to 98% success rate)
- better results
- young
- larger males
- excellent bone stock treated
- osteoarthritis better than for dysplasia or osteonecrosis
- some case series have shown survival comparable to conventional THA, while others have reported higher rates of early revision
- some products have been removed from the market due to early failure
- more recent prospective trials have shown few differences between resurfacing and THA
Patient comes in one year following hip resurfacing for OA. Differential for associated complications.
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/654/q_image_thumb.gif?1426975577)
- RULE OUT INFECTION
-
Periprosthetic femoral neck fracture
- incidence of 0% to 4% (more common than in THA)
- frequent cause for revision in acute post-operative period (<20 weeks)
- mechanism thought to be related to osteonecrosis
-
risk factors:
- notching of the femoral neck
- osteoporotic bone
- large areas of pre-existing osteonecrosis
- femoral neck impingement (from malaligned acetabular component)
- female sex
- varus positioning of femoral component
- presents as groin pain
- treatment
- convert to a THA
-
Implant loosening (aseptic)
- early loosening of the cemented femoral resurfacing component
-
Heterotopic ossification
- higher incidence of heterotopic ossification (from wider exposure)
-
Elevated metal ion levels in blood and urine from metal debris (unknown significance)
- Metallosis
- pseudotumour
- ALVAL (Aseptic Lymphocytic Vasculitis Associated Lesions)
- Can see this on biopsy
- Treatment is to replace with a THA metal on poly
What are three ways to assess the rotation of your femoral component?
-
anteroposterior axis
- defined as a line running from the center of the trochlear groove to the top of the intercondylar notch
- a line perpendicular to this defines the neutral rotational axis
-
transepicondylar axis
- defined as a line running from the medial and lateral epicondyles
- the epicondylar axis is parallel to the tibial surface
- A posterior femoral cut parallel to the epicondylar axis will create the appropriate rectangular flexion gap
-
posterior condylar axis
- defined as a line running across the tips of the two posterior condyles
- this line is in ~ 3 degrees of internal rotation from the transepicondylar axis, the femoral prosthesis should be externally rotated 3 degrees from this axis to produce a rectangular flexion gap
- if the lateral femoral condyle is hypoplastic, use of the posterior condylar axis may lead to internal rotation of the femoral component
Deformities associated with CAM (clinical/anatomical - not radiographic)
decreased head-to-neck ratio
aspherical femoral head
decreased femoral offset
femoral neck retroversion
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/656/a_image_thumb.jpeg?1427759788)
Deformities associated with Pincer (clinical/anatomical - not radiographic)
anterosuperior acetabular rim overhang
acetabular retroversion
acetabular protrusio
coxa profunda (deep socket)
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/657/a_image_thumb.jpg?1427759837)
Radiological features of FAI
-
Technique
- Hips in 15 deg IR with beam centered between symphysis and ASIS
- Assess symmetry of obturator, tear drops; symphysis should be 1-2 cm from the coccyx
-
Findings
- Overall
- Tonnis grade - OA
- Joint space < 2mm is a poor prognostic factor
- Shenton’s line
- Acetabulum
- CEA > 40, Tonnis angle < 0
- Version; cross over sign, ischial spine sign
- Retroversion index > 33-50% are significant
- Assess protrusio, coxa profunda
- Posterior wall sign
- Femoral side
- Assess coxa vara
- Sphericity and contour of femoral head - ‘pistol grip deformity’
- Overall
-
Dunn view
- Alpha angle >50 (cam)
-
Cross-table lateral
- Head neck off-set >8mm (cam)
-
false profile view
- to assess anterior coverage of the femoral head
- standing position at an angle of 65° between the pelvis and the film
![](https://s3.amazonaws.com/brainscape-prod/system/cm/319/690/658/a_image_thumb.png?1427762292)