Argument Forms Flashcards
Commutative laws
p ∧ q ≡ q ∧ p
p ∨ q ≡ q ∨ p
Associative laws
(p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
Distributive laws
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
Identity laws
p ∧ t ≡ p
p ∨ c ≡ p
Negation laws
p ∨ ~p ≡ t
p ∧ ~p ≡ c
Idempotent laws
p ∧ p ≡ p
p ∨ p ≡ p
Universal bound laws
p ∨ t ≡ t
p ∧ c ≡ c
De Morgan’s laws
~(p ∧ q) ≡ ~p ∨ ~q
~(p ∨ q) ≡ ~p ∧ ~q
Absorption laws
p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p
Unnamed Logical Equivalences
p → q ≡ ~p ∨ q
p ↔ q ≡ (~p ∨ q) ∧ (~q ∨ p)
Modus Ponens
p → q
p
∴ q
Modus Tollens
p → q
~q
∴ ~p
Generalization
p
∴ p ∨ q
q
∴ p ∨ q
Specialization
p ∧ q
∴ p
p ∧ q
∴ q
Conjunction
p
q
∴ p ∧ q
Elimination
p ∨ q
~q
∴ p
p ∨ q
~p
∴ q
Transitivity
p → q
q → r
∴ p → r
Proof by Division into Cases
p ∨ q
p → r
q → r
∴ r
Contraction Rule
~p → c
∴ p
Fallacy of the Converse
p → q
q
∴ p
Fallacy of the Inverse
p → q
~p
∴ ~q