AR(p) Flashcards
What is the Wald Test?
W=((Rβˆ_1)′[R(X′_1X_1)^(-1)R′]^(-1)(Rβˆ_1))/σ2_1a∼χ2(k)
What is the big difference between the ML ratio test and the Wald test?
The ML test has to estimate the restricted and unrestricted regressions, so H_0 and H_1, and test with the restrictions. The Wald Test only estimates the unrestricted one and Test in the restrictions.
What is the Maximum Likelihood ratio test?
LR= 2(logLˆ1−logLˆ0) = (T−p)(log ˆσ2_0−log ˆσ2_1)∼χ2(k)
With
What is logLˆ_0?
−((T−p)/2)log(2π)−((T−p)/2)log(ˆσ^2)−(1/2)(Y-X_0βˆ_0)′(Y−X_0βˆ_0)/σˆ^2
What is the main difference between Akaike and Bayesian information criteria?
The Bayesian Criteria penalizes more the the models with more coefficients, as they can be overspecified.
What is the penalty of having more parameters in the AIC and in the BIC?
AIC: 2(p+1)
BIC: log(T)(p=1)
What are the equations for AIC and BIC? How can we tell from AIC/BIC which model is the best?
AIC= -2log(L) + 2(p+1)
BIC= -2log(L) + log(T)(p+1)
We are looking for the model that minimizes AIC / BIC.
[-2*log(L)] captures the fit of the model on the data.
What is the joint density function applying the Bayesian theorem?
f(yT, . . . , y2, y1|δ, φ1, φ2, σ2) =(PI)^YT_t=3[f(yt|yt−1,yt−2,δ,φ,σ2)]*f(y2, y1|δ, φ, σ2)
What is McLeod’s test statistic? What’s the decision rule?
T(T+ 2)SUM_i=1^k(Corrhat[u^2_t - u^2_t−i]2)/(T−i)
If this statistic is smaller (larger) than the critical value associated with the χ2(k) distribution, then there is conditional homoscedasticity (heteroscedasticity)
What are the Mcleod’s test hypothesis?
H_0:corr(u^2_t, u^2_t−1) =· · ·=corr(u^2_t, u^2_t−k) = 0
H_1:corr(u^2_t, u^2_t−1)=/=· · · =/=corr(u^2_t, u^2_t−k)=/= 0
Quelle est la procédure du test McLeod?
La procédure est la suivante:
1) Estimer par MCO le AR(1) et calculer le carré des résidus,
2)Calculer l’autocorrélation du carré des résidus à partir de l’estimateur d’échantillon,
3) Calculer l’analogue de la statistique Q de Ljung-Box à partir de l’estimation des autocorrélations du carré des résidus
4) Confronter cette statistique à la valeur critique de la distribution χ2(k)