AP Calc Trig IDs Flashcards
D/dx [cos u]
-u’sin u
D/dx [tan u]
u’sec^2 u
D/dx [cot u]
-u’csc^2 u
D/dx [sec u]
u’sec u tan u
D/dx [csc u]
-u’csc u cot u
D/dx [arcsin u]
u’/(1-u^2)^(1/2)
D/dx [arccos u]
-u’/(1-u^2)^(1/2)
D/dx [arctan u]
u’/(1+u^2)
D/dx [arccot u]
-u’/(1+u^2)
D/dx [sin u]
u’cos u
D/dx [arcsec u]
u’/[|u|(u^2-1)^(1/2)]
D/dx [arccsc u]
-u’/[|u|(u^2-1)^(1/2)]
.{sin u du
-cos u + C
{cos u du
sin u + C
{tan u du
-ln|cos u| + C
{cot u du
ln|sin u| + C
{sec u du
ln|sec u + tan u| + C
{csc u du
-ln|csc u + cot u| + C
{sec^2 u du
tan u + C
{csc^2 u du
-cot u + C
{sec u tan u du
sec u + C
{csc u cot u du
-csc u + c
{du/(a^2-u^2)^(1/2)
arcsin (u/a) + C
{du/(a^2 + u^2)
(1/a)arctan(u/a) + C
{du/[u(u^2 - a^2)^(1/2)]
(1/a)arcsec (|u|/a) + C
sin 2u
2sin u cos u
cos 2u
cos^2 u - sin^2 u =
2cos^2 u - 1 =
1 - 2sin^2 u
tan 2u
(2tan u)/(1 - tan^2 u)
sin^2 u
(1 - cos 2u)/2
cos^2 u
(1 + cos 2u)/2
tan^2 u
(1 - cos 2u)/(1 + cos 2u)
sin^2 x + cos^2 x=
1
1 + tan^2 x=
sec^2 x
1 + cot^2 x=
csc^2 x