AP a Flashcards
Velocity: x-axis
Vx=Vx(initial)
X - distance
x= x(initial)+Vx(initial)t
Velocity: y-axis
Vy = Vy(initial) -gt
(Velocity: y-axis)^2
(Velocity: y-axis)^2= Vy(initial)^2-2g(y-y(initial))
(Velocity: x-axis)^2
(Velocity: x-axis)^2= Vx(initial)^2+2ax(x-x(initial))
Vx(initial)
Vx(initial)= V(initial)cosø(initial)
Vy(initial)
Vy(initial)= V(initial)sinø(initial)
(Velocity: y-axis)^2 (2d)
(Velocity: y-axis)^2= Vy(initial)^2+2g(y-y(initial))
Vx(2d)
Vx = Vx(initial) + at
x (2d)
x(initial)+Vx(initial)t+1/2at^2
y (2d)
y(initial)+Vy(initial)t+1/2at^2
vy(2d)
vy(initial)+at
free falling object formulas
y=(v^2-v(initial)^2)/2a
y=(v(initial)t)+(1/2)(at^2)
d=(1/2)gt^2
work
force x distance
work (at angle (ø))
Fd(cos(ø))
Potential energy - PE
mgy
Elastic potential energy
1/2(kx^2) k= spring constant
work energy principle
∆KE + ∆PE
momentum
mass x velocity
Impulse - change in momentum
Force x change in time
Law of conservation of energy
1/2mv^2+mgy=1/2mv^2+mgy
Law of conservation of momentum
total momentum is always the same
Static friction
μs(Fn)
kinetic friction
μk(Fn)
Spring force
-kx
Kinetic energy
1/2mv^2
Work net/ change in kinetic energy
1/2mv^2-1/2mv^2
cenrtipetal accerleration
v^2/r
cenrtipetal velocity
2πr/T
centripetal force
mv^2/r or Fn(sin(ø))
frequency
1/p
period
1/f
how to add vectors
reduce them into their components and add like vector
power
work/time
Incline acceleration
ax=g(sin(ø))-μk(g)(cos(ø))
Height
V(initial)+1/2(at^2)
pendulum
mgsin(ø)
mg(cos(ø)