analisi 1, 2, algebra e geometria Flashcards

1
Q

log_a (a^x)

A

= x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

log_a (xy)

A

= log_a(x) + log_a(y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

log_a (x/y)

A

= log_a(x) - log_a(y)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

log_a (x^b)

A

= b * log_a (x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

log_b (x) (portarlo in base a)

A

= log_a (x) / log_a (b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

sommatoria da k=1 a n (k)

A

n*(n+1)
————–
2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

sommatoria da k=0 a n (q^k)

A

1-q^(n+1)
————
(1-q)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

sin (-x)

A
  • sin (x)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

cos (-x)

A

cos(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

tan(-x)

A

-tan(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

cot(-x)

A

-cot(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

sin (a+b)

A

sin(a)cos(b) + cos(a)sin(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

sin (a-b)

A

sin(a)cos(b) - cos(a)sin(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

cos (a+b)

A

cos(a)cos(b) - sin(a)sin(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

tan (a+b)

A

1 - tan(a)tan(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

tan (a-b)

A

1 + tan(a)tan(b)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

sin (2a)

A

2*sin(a)cos(a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

cos (2a)

A

cos^2(a) - sin^2(a)

19
Q

tan (2a)

A

1 - tan^2(a)

20
Q

sin (a/2)

A

+ o - sqrt ( 1 - cos(a) ) / 2

21
Q

cos (a/2)

A

+ o - sqrt [ 1 + cos(a) ] / 2

22
Q

tan (a/2)

A

+ o - sqrt { [ 1 - cos(a) ] / [ 1 + cos(a) ] }

23
Q

sin h (x)

A
      2
24
Q

cos h (x)

A
     2
25
Q

disequazione irrazionale:

sqrt(a) > b

A

sistema 1:—————— sistema 2:
a >= 0 ———————– a >= 0
b >= 0 ———————– b < 0
a > b^2

26
Q

z = x + iy

scrivere coniugato e modulo

A

coniugato: z’ = x - iy
modulo: | z | = sqrt ( x^2 + y^2 )

27
Q

z = x + iy

scrivere forma trigonometrica

A

z’ = p ( cos(a) + i*sen(a) )
p = sqrt ( x^2 + y^2)
cos(a) = x / sqrt ( x^2 + y^2 )
sin (a) = y / sqrt (x^2 + y^2)

28
Q

z = x + iy

scrivere forma esponenziale

A

z’ = p*e^(ia)
p = sqrt ( x^2 + y^2)
cos(a) = x / sqrt ( x^2 + y^2 )
sin (a) = y / sqrt (x^2 + y^2)

29
Q

lim x—–> inf [ 1 + 1/x ] ^(x)

A

e

30
Q

lim x——>inf [ x^(1/x) ]

A

1

31
Q

lim x——-> 0 [ 1 + x ]^(1/x)

A

e

32
Q

derivata di x^a

A

a* x^( a- 1 )

33
Q

derivata di sqrt(x)

A

2*sqrt(x)

34
Q

derivata di a^(x)

A

a^(x)*ln(a)

35
Q

derivata di tan(x)

A

cos^2(x)

36
Q

TEOREMA DI ROLLE

A

se una funzione [a,b]—>R è continua in [a,b] e derivabile in ]a,b[, e:
f(a) = f(b)
allora:
esiste c tale che f’(c) = 0

37
Q

TEOREMA DI CAUCHY

A
siano f,g definite da [a,b] ---> R,
continue in [a,b] e derivabili in ]a,b[
tali che g(a) diverso da g(b)
e non esiste una x tale che g'(x) = f'(x) = 0
allora:
esiste c tale che: 
f(b) - f(a) ......... f'(c)
---------------  = -------
g(b) - g(a) ....... g'(c)
38
Q

TEOREMA DI LAGRANGE

A

sia f: [a,b]—->R continua in [a,b] e derivabile in ]a,b[
allora:
esiste un c appertenente a ]a,b[ tale che:
…………… f(b) - f(a)
f’(c) = —————-
…………….. b - a

39
Q

TEOREMA DI DE L’HOPITAL

A

siano f,g derivabili
sia x’ punto di accumulazione tale che
lim x—>x’ f(x) = 0 e lim —>x’ g(x) = 0
(oppure entrambi infinito)
allora, se esiste, il limite:
lim x—>x’ [ f(x) / g(x) ] = lim x—>x’ [ f’(x) / g’(x) ]

40
Q

TEOREMA DI FERMAT

A

se esiste un massimo o un minimo relativo in una funzione, allora f’(c) = 0
con c punto di max o di min relativo

41
Q

∫ x^α dx

A

x^(α+1)
———- + c
α+1

42
Q

∫ a^x dx

A

a^x
——- + c
ln a

43
Q

METODO DI INTEGRAZIONE PER PARTI:

A

∫ f ′(x) ⋅ g(x) dx = f(x) ⋅ g(x) − ∫ f(x) ⋅ g′(x) dx