Anaesthetics - Oxygen therapy Flashcards
What are the causes of tissue hypoxia?
Tissue hypoxia occurs within 4 minutes of cardiorespiratory arrest because blood, lung and tissue reserves are small. Causes of tissue hypoxia can be divided into those resulting in: (a) arterial hypoxaemia and (b) failure of oxygen-haemolgobin transport systems without arterial hypoxaemia.
What 6 mechanisms cause hypoxaemia?
Hypoxaemia is a low partial pressure of oxygen in the blood and is can cause, but is not the same as, hypoxia (which is a low tissue tension of oxygen). 6 main causes of hypoxaemia are:
1) Low inspired PO2
2) Hypoventilation (alveolar gas equation)
3) Shunt
4) Ventilation perfusion inequality
5) Impaired diffusion
6) Venous saturation
What is the alveolar arterial (A-a gradient)?
This is the difference between alveolar oxygen tension and arterial oxygen tension. A normal A-a gradient is approximately 5mmHg. PaO2 can be obtained from blood gas measurements and PAO2 is determined from the alveolar gas equation. The simplified equation is:
PAO2 = PiO2 - (1.25 x PaCO2) [PiO2 = FiO2 x (barometric - water vapour pressure), breathing air, PiO2 = 0.21 x (101-6.2) = 19.9kPa]
The A-a gradient exists in a healthy person because a fraction of venous blood mixes with oxygenated blood. This mixing of unoxygenated and oxygenated blood is called the venous admixture. Two physiologic causes of venous admixture are the result of small anatomical shunt (e.g. bronchial circulation, thebesian veins) and regional variations in V/Q ratio. Approximately half of the normal A-a gradient is caused by bronchial circulation and half is caused by regional variations in V/Q ratio. An A-a ratio of greater than 15mmHg is considered abnormal and usually leads to hypoxaemia.
When can a low inspired PO2 cause hypoxaemia?
Low inspired oxygen partial pressure occurs at high altitude due to reduced barometric pressure, during fires due to O2 combustion and after toxic fume inhalation.
What is the most common cause of hypoxaemia?
Ventilation/ perfusion (V/Q) mismatch is the most frequent cause of hypoxaemia even in diseases like pulmonary fibrosis where diffusion limitation might expect to predominate.
Why does V/Q inequality cause hypoxaemia?
Normal V/Q ratio is 0.8 (i.e. minute ventilation and cardiac output are almost matched). When a partially obstructed airway occurs (low V/Q ratio), a fraction of the blood that passes through the capillary bed of the obstructed airway does not get fully oxygenated, resulting in an increase in venous admixture. Only a small amount of venous admixture is required to lower systemic arterial PO2 as a result of the nature of the oxygen dissociation curve. Because of the non linear shape of the dissociation curve, a low V/Q ratio causes both a drop in PO2 and O2 content. Patients who have abnormally low V/Q ratios have a high A-a gradient, low PO2 and a low O2 content, but usually a normal or slightly elevated PaCO2. PaCO2 does not change much because the carbon dioxide equilibrium curve is nearly linear, which allows excess CO2 to be removed from the blood by the lungs.
Lung units with a large V/Q ratio (i.e. ventilated but not perfused, due to PE) contribute to deadspace but not hypoxaemia. Cardiac output is redirected to other parts of the lung resulting in overperfusion, but this does not compensate the O2 content.
What is a shunt?
Shunt refers to venous blood that bypasses lung gas exchange and passes directly into the systemic arterial system. These could either be an anatomical right-to-left shunt or an absolute intrapulmonary shunt. The latter occurs when an airway is totally occluded (e.g. by a foreign body or mucus plug). Patients with hypoxaemia from a shunt have a high A-a gradient, low PO2, low O2 content, and a normal or slightly elevated PaCO2.
What can be done to prove that a shunt is the cause of a patients hypoxaemia?
It is difficult to distinguish shunt from hypoxaemia caused by low V/Q ratios is to have the patient breath 100% oxygen for 15 minutes. If the PaO2is greater than 13kPa the cause is a low V/Q ratio. If the PaO2 is less than 13kPa then the cause is a shunt. Strictly speaking, shunts cannot be treated with 100% oxygen unless the shunt fraction is >30%. The patient with regional hypoventilation who breathes 100% oxygen compensates for the low V/Q ratio, and because all of the blood leaving the pulmonary capillary is now fully saturated, the venous admixture is eliminated. But the low arterial PO2 does not get corrected by breathing 100% O2 in a patient with a shunt because enriched oxygen mixture never comes into contact with the shunt. Alveolar recruitment techniques are better.
What effect does generalised hypoventilation have on the A-a gradient?
Hypoventilation is a cause of arterial hypoxaemia. It occurs when alveolar ventilation is abnormally decreased. This can arise in COPD or respiratory depression (e.g. head injury, opiate OD). Because alveolar ventilation is depressed, there is also a significant increase in arterial PCO2, with a decrease in arterial pH. In generalised hypoventilation, total ventilation is insufficient to maintain normal systemic arterial PO2 and PCO2. But, there is a normal A-a gradient in hypoventilation, as a result of alveolar and arterial PO2 being lowered proportionately. If a patient has a low PO2 and a normal A-a gradient, the cause of hypoxaemia is entirely the result of generalised hypoventilation.
How should hypoventilation be treated?
The best corrective measure for generalized hypoventilation is to place the patient on a mechanical ventilator, breathing room air. This treatment will return both arterial PO2 and PCO2 to normal. Administering supplemental oxygen to a patient with generalized hypoventilation will correct hypoxaemia but not hypercapnia because ventilation is still depressed.
How does a diffusion block cause hypoxaemia?
This condition occurs when the diffusion difference across the alveolar capillary membrane is increased or the permeability of the alveolar capillary membrane is decreased. It is characterised by a low PaO2, a high A-a gradient and a high PaCO2. Pulmonary oedema is one of the major causes of diffusion block.
How does venous saturation cause hypoxaemia?
Venous blood with a very low SaO2 returning to the right heart usually has little effect on arterial PaO2, but in patients with impaired gas exchange or low CO it may reduce PaO2.
What are the clinical features of tissue hypoxia?
These are non specific (e.g. altered mental state, dyspnoea, hyperventilation, arrhythmias, hypotension). Central cyanosis is detected when deoxygenated haemoglobin is >1.5-5 g/dL. It is an unreliable sign of hypoxia because it can be absent in hypoxic, anaemic patients but apparent in normoxic polycythaemic patients.
What failures in oxygen-haemoglobin transport can cause hypoxia?
This is the second category of diseases that can cause tissue hypoxia. They include:
1) Inadequate organ perfusion
2) Low haemoglobin concentration (e.g. anaemia)
3) Reduced oxygen dissociation (e.g. haemoglobinopathies)
4) Failure of oxygen utilisation (e.g. sepsis, cyanide poisoning)
What methods can be used to monitor oxygenation?
1) Pulse oximetry and blood gas analysis
- Arterial PO2 is the tension driving oxygen into tissues
- Arterial SO2 reflects how much oxygen is being carried by haemoglobin molecules
- Pulse oximetry and blood gases can be NORMAL when tissue hypoxia is caused by low CO, anaemia or impaired oxygen utilisation. In these circumstances, mixed venous oxygen saturation <55-60% reflects inadequate oxygen delivery
2) A-a gradient determines efficiency of gas exchange
- A-a gradient is increased in shunt, V/Q mismatch and diffusion impairment
- normal value is 0.2-0.4kPa