All the stuff Flashcards
1 + tan²ϴ =
sec²ϴ
1 + cot²ϴ =
cosec²ϴ
Sin2ϴ
2sinϴcosϴ
Cos2ϴ (to cos and sin)
Cos²ϴ - Sin²ϴ
Cos2ϴ(to cos)
2Cos²ϴ - 1
Cos2ϴ(to sin)
1 - 2Sin²ϴ
Tan2ϴ
2Tanϴ / 1 - Tan²ϴ
secϴ
1/cosϴ
cosecϴ
1/sinϴ
cotϴ
1/tanϴ = cosϴ/sinϴ
Equation of line passing through (a1,a2,a3) in direction (u1,u2,u2) in vector form
r = (a1)………..(u1)
……(a2)+…..λ(u2)
……(a3)……….(u3)
Equation of line passing through (a1,a2,a3) in direction (u1,u2,u2) Cartesian form
(x-a1)/u1 = (y-a2)/u2 = (z-a3)/u3
angle between two vectors is given by
Cosθ = a.b / |a|.|b| |a| = sum of the xyz components squared and square rooted
the Cartesian equation for a plane perpendicular to (n1) ……………………………………………………………………………………..(n2)
……………………………………………………………………………………..(n3)
(n1)X + (n2)Y + (n3)Z + d = 0
the vector perpendicular to the plane (n1)X + (n2)Y + (n3)Z + d = 0
(n1)
(n2)
(n3)