All Flashcards
Ground state hydrogen energy
-E_1=ł^2 / (2 m a^2)=k^2 m e^4 / (2ł^2)
Bohr radius
a=ł^2 / (k m e^2)
Electric constant k=1/(4 pi e_0)
10^10 Н м^2/Кл
How does the ground state energy of a hydrogen-like atom depend on Z?
E_1 ~ Z^2
1 Henri in terms of seconds
H=V s^2 / C=В с^2 / Кл
1 Ohm in terms of seconds
Ohm = V s / C = В с / Кл
1 Farade in terms of other units
F = C / V = Кл / В
h c = ? eV nm
1240
ł c = ? eV nm
200
k_b * 300 K = ? eV
0,026 = 1/40
Mass of a proton
938 MeV/c^2
Atomic mass unit (carbon/12)
931 MeV/c^2
Rydberg constant
R = -E_1/hc = 1.1*10^7 m^(-1)
Rydberg formula for hydrogen emission
1/lambda = R ( 1/m^2 - 1/n^2 )
Fine structure constant
alpha = k e^2 / (łc) = 1/137
Second order perturbation correction to energy levels
E_n^1 = E_n + + Sum ||^2 / (E_n - E_m)
Wien displacement law
Lambda_max = 3 / T (mm)
Lorentz transformation matrix from x to x’
Gamma -gamma beta 0 0
-gamma beta Gamma 0 0
0 0 1 0
0 0 0 1
Energy-momentum vector
(E/c, p)
Charge-current vector
(c rho, j)
Wave four-vector
(omega, c k)
Square of the energy-momentum vector = ?. Invariant? Conserved?
m^2 c^2 in any reference frames. Invariant and conserved.
Relativistic energy in terms of the rest energy
E = gamma m c^2
Relativistic momentum in a non-rest frame
p = gamma m v
= mu0 p0^2 w^4 / (12 pi c), | c^2 times less for a magnetic dipole.