Algebra Flashcards
Definitions :
constant
term
coefficient
constant : a nb, or a symbol, such as Pi, that doesn’t change in value
term : a product of constants and variables, including powers of variables 5 x 6y² x²y²z²
coefficient : the constant factor of a term
in 6y², 6 is the coefficient
when no constant is written, the coefficient is 1
(a+b)² =
(a-b)² =
a²-b² =
(a+b)² = a² + 2ab + b² (a-b)² = a² - 2ab + b² a²-b² = (a+b)(a-b)
Factor the following expressions x² - 49 = 9x² -16 = 25x² - 64y² = x²y² - 1 =
x² - 49 = ( x + 7 )( x - 7 )
9x² -16 = ( 3x - 4 )( 3x + 4 )
25x² - 64y² = ( 5x + 8y )( 5x - 8y )
x²y² - 1 = ( xy - 1 )( xy + 1 )
Factor the following expressions x^6 - 16 = x^8 - 9y² = x^7 - 4x^5 = x^4 - 81 =
x^6 - 16 = ( x^3 - 4 ) ( x^3 + 4 )
x^8 - 9y² = ( x^4 + 3y ) ( x^4 - 9y)
x^7 - 4x^5 = x^5 ( x - 2 ) ( x + 2)
x^4 - 81 = ( x² + 9 ) ( x² - 9 ) = ( x² + 9 )( x - 3 )( x + 3 )
Factor the following expressions
y² - 25 =
25s² - t^4 =
x^9 - x =
y² - 25 = (y - 25)(y + 25)
25s² - t^4 = (5s - t²)(5s + t²)
x^9 - x = x(x^8 - 1) = x(x^4 - 1)(x^4 + 1) = x(x^4 + 1)(x² + 1)(x² - 1)
If y = 5 + x and y = 12 - x and if y² = x² + K then K equals which of the following? A : 17 B : 25 C : 60 D : 119
y = 5 + x so y - x = 5 y = 12 - x so y + x = 12
K = y² - x² = ( y - x )( y + x) = 5*12 = 60
(x + p)(x + q) =
x² + qx + px + pq
x² + (p + q)x + pq
we need to find the unknown constants p & q
the linear coefficient of the quadratic is the SUM of these two unknowns, and the constant term of the quadratic is the PRODUCT of the two unknowns
Factor : x² + 8x +15 x² + 14x + 24 x² + 4x -21 x² - 2x - 35 x² - 16x + 48
x² + 8x + 15
we need to find two numbers whose sum is 8 and whose product is 15
x² + 8x + 15 = (x+3)(x+5)
x² + 14x + 24 = (x+2)(x+12)
x² + 4x -21
since the sum is positive, the larger nb must be positive
+7 and -3
x² + 4x -21 = (x+7)(x-3)
x² - 2x - 35
one negative, one positive, one with bigger absolute value is negative
+5 and -7
x² - 2x - 35 = (x-7)(x+5)
x² - 16x + 48
both negative
-12 and -4
x² - 16x + 48 = (x-12)(x-4)
Factor : x² + 6x + 5 = x² - 5x -14 = x² + 6x -27 = x² - 20x + 36 =
x² + 6x + 5 = (x+5)(x+1)
x² - 5x -14 = (x+2)(x-7)
x² + 6x -27 = (x+9)(x-3)
x² - 20x + 36 = (x-2)(x-18)
Factor : 6x^3 - 150x = 2x² - 22x +48 = 7x^4 - 56x^3 - 63x² = -3x^9 + 48xy^4 =
6x^3 - 150x = 6x ( x² -25 ) = 6x (x-5) (x+5)
2x² - 22x +48 = 2 (x² - 11x +24) = 2 ( x - 8 ) ( x + 3 )
7x^4 - 56x^3 - 63x² = 7x² (x² - 8x - 9) = 7x² (x-9)(x+1)
-3x^9 + 48xy^4 = 3x (16y^4 - x^8) = 3x (4y² + x^4)(4y² - x^4) = 3x (4y² + x^4) (2y + x²) (2y - x²)
Find the prime factorization of 1599, 2491, 9975
notice that
1599 = 1600 - 1 = 40² - 1² = (40 + 1)(40 - 1) = (41)(39) =(41)(313)
413*13
2941 = 2500 - 9 = 50²- 3² = ( 50 -3)(50+3) = 4753
4753
9975 = 10 000 - 25 = 100² - 5² = (105)(95) = (521)(519) = (537)(519)
5²3719
0.9991 = 1 - 0.0009 = 1² - 0.03² = (1+0.03)(1-0.03) = (1.03)(0.97)
EXPRESS THE NB AS THE DIFFERENCE OF TWO SQARES
Simplify :
- 999951 / 0.993
(0. 999856/0.988) - 1
0.999951 / 0.993 = (1 - 0.000049) / (1 - 0.007)
= (1² - 0.007²) / (1 - 0.007)
= (1 + 0.007)(1 - 0.007) / (1 - 0.007)
= 1.007
(0.999856/0.988) - 1 = [(1 - 0.000144)/(1 - 0.012)] - 1
= [(1 - 0.012)(1 + 0.012) / (1 - 0.12)] - 1
= 1.012 - 1
= 0.012
Simplify :
( x² + 4x - 21) / ( x² - 6x + 9)
( 2x^4 - 8x² ) / ( x² - 5x - 14)
( y² + 2x - 8 ) / ( x - 4 )
( x² + 4x - 21) / ( x² - 6x + 9) = [(x+7)(x-3)] / (x-3)²
= (x+7) / (x-3)
( 2x^4 - 8x² ) / ( x² - 5x - 14) = [2x²(x² - 4)] / [(x+2)(x-7)]
= [2x² (x+2)(x-2)] / [(x+2)(x-7)]
= [2x²(x-2)] / (x-7)
( y² + 2x - 8 ) / ( x - 4 ) = [( y² / (x-4)] + [2(x-4)) / (x-4)]
= [y²/(x-4)] + 2
If (x² + 12x - 45) / ( x + 15) = 22, then x = ?
(x² + 12x - 45) / ( x + 15) = 22
(x+15)(x-3) / (x+15) = 22
x - 3 = 22
x = 25
If ( 4P + 3Q - 4R) / ( P - R ) = 19, then Q / (P - R) = ?
( 4P + 3Q - 4R) / ( P - R ) = 19 [4( P - R) + 3Q] / ( P - R ) = 19 4 + [3Q / (P-R)] = 19 3Q/(P-R) = 15 Q / (P - R) = 5